
Leveraging Depth Cameras and Wearable Pressure Sensors for Full-body
Kinematics and Dynamics Capture

Peizhao Zhang∗1 Kristin Siu†2 Jianjie Zhang∗1 C. Karen Liu†2 Jinxiang Chai∗1

1Texas A&M University
2Georgia Institute of Technology

Figure 1: Our system automatically and accurately reconstructs full-body kinematics and dynamics data using input data captured by three
depth cameras and a pair of pressure-sensing shoes. (top) reference image data; (bottom) the reconstructed full-body poses and contact
forces (red arrows) and torsional torques (yellow arrows) applied at the center of pressure.

Abstract

We present a new method for full-body motion capture that uses
input data captured by three depth cameras and a pair of pressure-
sensing shoes. Our system is appealing because it is low-cost,
non-intrusive and fully automatic, and can accurately reconstruct
both full-body kinematics and dynamics data. We first introduce a
novel tracking process that automatically reconstructs 3D skeletal
poses using input data captured by three Kinect cameras and wear-
able pressure sensors. We formulate the problem in an optimiza-
tion framework and incrementally update 3D skeletal poses with
observed depth data and pressure data via iterative linear solvers.
The system is highly accurate because we integrate depth data from
multiple depth cameras, foot pressure data, detailed full-body ge-
ometry, and environmental contact constraints into a unified frame-
work. In addition, we develop an efficient physics-based motion
reconstruction algorithm for solving internal joint torques and con-
tact forces in the quadratic programming framework. During re-
construction, we leverage Newtonian physics, friction cone con-
straints, contact pressure information, and 3D kinematic poses ob-
tained from the kinematic tracking process to reconstruct full-body
dynamics data. We demonstrate the power of our approach by cap-
turing a wide range of human movements and achieve state-of-the-
art accuracy in our comparison against alternative systems.
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1 Introduction

Motion capture technologies have revolutionized computer anima-
tion over the past decade. With detailed motion data and editing
algorithms, we can directly transfer the expressive performance of
a real person to a virtual character, interpolate existing data to pro-
duce new sequences, or compose simple motion clips to create a
repertoire of motor skills. With appropriate computational models
and machine learning algorithms, we can use motion data to cre-
ate more accurate and realistic models than those based on physics
laws and principles alone. Additionally, kinematic and dynamic
information of human motion are extremely valuable to a wide va-
riety of fields such as biomechanics, robotics, and health, where
there continues to be a growing need for efficient, high-quality, and
affordable motion capture systems.

Yet despite decades of research in computer graphics and a plethora
of approaches, many existing motion capture systems still suffer
from several limitations. Firstly, many systems require the subject
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to wear cumbersome devices, or limit the subject’s motion to a re-
stricted area. Additionally, in order to capture high-fidelity data,
the specialized hardware for these systems is often expensive and
requires extensive training to operate. Finally, current motion cap-
ture technology specializes in capturing only kinematic information
of the movement, rather than its underlying dynamics. Combin-
ing multiple kinds of sensory technologies in order to acquire this
dynamic information is common practice in the fields of biome-
chanics and kinesiology. However, this data acquisition process
typically involves expensive and intrusive optical motion capture
systems and unmovable force platforms that can only be operated
in a highly restricted environment.

Advancements in hardware technology have permitted sensory de-
vices to become smaller and cheaper. With the advent of affordable
depth cameras, image-based motion capture systems hold promise,
but are still limited in the kinds of motions that can be captured.
In order to find a solution to these shortcomings, we are inspired
by trends in health technology, where the ubiquity of small sensors
have made it possible to collect various types of data about human
subjects unobtrusively. If combining small and affordable sensors
has the potential to provide a powerful amount of information, the
question then becomes: What is the ideal set of basic sensors re-
quired to capture both high-quality kinematic and dynamic data?

Our answer is a system consisting of a pair of low-cost, non-
intrusive pressure-sensing shoes and three Microsoft Kinect cam-
eras. Our solution leverages the fact that both of these two sensory
technologies are inexpensive and non-intrusive. Additionally, they
are complementary to each other as they capture fundamentally-
different aspects of the motions. The pressure-sensing shoes pro-
vide high resolution contact timing and location information that is
difficult to derive automatically from computer vision algorithms.
On the other hand, depth data from the Kinect cameras provide
kinematic information which can filter out noise in the pressure
sensors, and provide global position and orientation necessary to
estimate dynamic quantities such as the center of pressure. The re-
sult is that our system is easy to set up and can be used to acquire
motions difficult to capture in restrictive lab settings, such as highly
dynamics motions that require a large amount of space.

Our unified system integrates depth data from multiple cameras,
foot pressure data, detailed full-body geometry, and environmental
contact constraints. We first introduce a novel tracking process that
automatically reconstructs 3D skeletal poses using input data cap-
tured by the Kinect cameras and pressure sensors. We formulate
this problem in an optimization framework and incrementally up-
date 3D skeletal poses with observed input data via iterative system
solvers. In addition, we develop an efficient physics-based motion
optimization algorithm to reconstruct full-body dynamics data, in-
ternal joint torques, and contact forces across the entire sequence.
We leverage Newtonian physics, contact pressure information, and
3D kinematic poses obtained from the kinematic pose tracking pro-
cess in a quadratic programming framework. By accounting for
physical constraints and observed depth and pressure data simul-
taneously, we are ultimately able to compute both kinematic and
dynamic variables more accurately.

We demonstrate our system by capturing high-quality kinematics
and dynamics data for a wide range of human movements. We as-
sess the quality of reconstructed motions by comparing them with
ground truth data simultaneously captured with a full marker set
in a commercial motion capture system [Vicon Systems 2014]. We
show the superior performance of our system by comparing against
alternative methods, including [Wei et al. 2012], [Microsoft Kinect
API for Windows 2014] and full-body pose tracking using Iterative
Closest Point (ICP) method (e.g., [Knoop et al. 2006; Grest et al.
2007]). In addition, we evaluate the importance of each key compo-

nent of our 3D motion capture system by dropping off each compo-
nent in evaluation. Finally, we validate the quality of reconstructed
dynamics data by comparing joint torque patterns obtained by our
system against those from a Vicon system and force plates.

In summary, this paper makes the following contributions:

• The first system to use multiple cameras and a pair of
pressure-sensing shoes for accurately reconstructing both full-
body kinematics and dynamics.

• The use of a signed distance field for full-body kinematic
tracking.

• The idea of incorporating depth data, pressure data, full-body
geometry and environmental contact constraints into a unified
framework for kinematic pose tracking.

2 Background

Various technologies have been proposed for acquiring human body
movement. We use a combination of low-cost, portable devices to
design a new motion capture system that automatically acquires and
reconstructs full-body poses, joint torques, and contact forces all at
once. To our knowledge, no single existing motion capture tech-
nology can achieve this goal. In the following section, we compare
our system with existing motion capture systems popular for both
research and commercial use.

One appealing solution for full-body motion capture is to use
commercially available motion capture systems, including marker-
based motion capture (e.g., [Vicon Systems 2014]), inertial mo-
tion capture (e.g., [Xsens 2014]), and magnetic motion capture
(e.g., [Ascension 2014]). These methods can capture full-body
kinematic motion data with high accuracy and reliability. However,
they are often cumbersome, expensive and intrusive. Our entire
system does not require the subject to wear special suits, sensors
or markers except for a pair of normal shoes. This allows us to
capture performance or activities such as sports in their most nat-
ural states. More importantly, we aim for much cheaper and more
accurate motion with both kinematic and dynamic information.

Image-based systems, which track 3D human poses using conven-
tional intensity/color cameras (for more details, we refer the reader
to [Moeslund et al. 2006]), offer an appealing alternative to full-
body motion capture because they require no markers, no sensors,
no special suits and thereby do not impede the subject’s ability to
perform the motion. One notable solution is to perform sequen-
tial pose tracking based on 2D image measurements (e.g., [Bregler
et al. 2004]), which initializes 3D human poses at the starting frame
and sequentially updates 3D poses by minimizing the inconsistency
between the hypothesized poses and observed measurements. This
approach, however, is often vulnerable to occlusions, cloth defor-
mation, illumination changes, and a lack of discernible features on
the human body because 2D image measurements are often not suf-
ficient to determine high-dimensional 3D human movement.

One way to reduce the reconstruction ambiguity is to use multi-
ple color cameras to capture full-body performances [Vlasic et al.
2008; de Aguiar et al. 2008]. Another possibility is to learn kine-
matic motion priors from pre-captured motion data, using genera-
tive approaches (e.g., [Pavlović et al. 2000; Urtasun et al. 2005]) or
discriminative models (e.g., [Rosales and Sclaroff 2000; Elgammal
and Lee 2004]). While the use of learned kinematic models clearly
reduces ambiguities in pose estimation and tracking, the 3D mo-
tions estimated by these methods are often physically implausible,
therefore displaying unpleasant visual artifacts such as out-of-plane
rotation, foot sliding, ground penetration, and motion jerkiness.
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Figure 2: System overview.

Our work is closely related to a rapidly growing body of re-
cent literature on 3D pose tracking and detection with depth data
(e.g., [Plagemann et al. 2010; Shotton et al. 2011; Baak et al. 2011;
Ye et al. 2011; Wei et al. 2012]). These approaches are appealing
for human motion capture because current commercial depth cam-
eras are low-cost and can record per-pixel 3D depth information
at a high frame rate. However, the use of a single depth camera
for online motion capture often produces poor results due to sen-
sor noise and inference ambiguity caused by significant occlusions.
Among these, our work is most comparable to [Wei et al. 2012].
Both systems build upon the full-body motion tracking process that
sequentially updates 3D skeletal poses using observed depth image
data. However, our kinematic motion tracking process produces
much more accurate results because we integrate depth data from
three Kinect cameras, foot pressure information, detailed full-body
geometry, and environmental contact constraints to reconstruct the
full-body kinematic poses. In addition, our goal differs that we aim
to reconstruct both full-body kinematics and dynamics data while
their work is focused only on 3D kinematic pose reconstruction.

Our idea of leveraging Newtonian physics, contact pressure infor-
mation, and depth image data to reconstruct kinematic and dy-
namic information is motivated by recent efforts in combining
physical constraints and image data for human motion tracking
(e.g., [Brubaker and Fleet 2008; Vondrak et al. 2008; Wei and Chai
2010; Vondrak et al. 2012]). The use of physics for human mo-
tion tracking has been shown to be effective for tracking 2D low-
body walking motion [Brubaker and Fleet 2008] or normal walking
and jogging motion [Vondrak et al. 2008] in a recursive Bayesian
tracking framework. Notably, Vondrak and his colleagues [2012]
proposed a video-based motion capture framework that optimizes
both the control structure and parameters to best match the resulting
simulated motion with input observation data. Our system is dif-
ferent because we optimize kinematic poses, internal joint torques,
and contact forces based on observed data. In addition, our idea of
combining depth images and pressure data significantly reduces the
ambiguity of physics-based motion modeling.

In computer animation, pressure and contact information has been
used to reconstruct and synthesize human motion using devices
such pressure-sensing mats [Yin and Pai 2003] and Wii balance
boards [Ha et al. 2011]. Unfortunately, these systems do not permit
the capture of highly dynamic motions, due to the static restrictions

of the pressure-sensing hardware. Meanwhile, in biomechanics and
health technology, there are a number of systems that have been
used to acquire dynamic information, such as the center of pres-
sure [Adelsberger and Tröster 2013], which embed sensor technol-
ogy directly into wireless footwear. However, the novelty of our
system is that instead of collecting these dynamic values for sepa-
rate analysis, we use this information immediately to assist in our
kinematic and dynamic reconstruction.

Among all existing systems, our work is most similar to Wei
and Chai [2010], where a physics-based model was applied for
reconstructing physically-realistic motion from monocular video
sequences. Both systems aim to reconstruct full-body kinematic
poses, internal joint torques, and contact forces across the entire
motion sequence. However, their system relies on manual specifi-
cation of pose keyframes, and intermittent 2D pose tracking in the
image plane, to define the objective for the optimization. In addi-
tion, they rely on manual specification of contacts or foot place-
ment constraints to reduce the ambiguity of physics-based motion
modeling. By contrast, our system is fully automatic. We also com-
plement depth image data with pressure sensor data to obtain more
accurate kinematic and dynamic information.

3 Overview

Our full-body kinematics and dynamics data acquisition framework
automatically reconstructs 3D body shape, 3D kinematic poses, in-
ternal joint torques, and contact forces as well as contact locations
and timings using three Kinect cameras and a pair of pressure-
sensing shoes. The algorithm consists of three main components
summarized as follows (see Figure 2):

Kinematic pose tracking. We introduce a novel tracking process
that sequentially reconstructs 3D skeletal poses over time using
input data captured by the Kinect cameras and wearable pressure
sensors. We formulate an optimization problem which minimizes
the inconsistency between the reconstructed poses and the observed
depth and pressure data. We propose a new metric (signed distance
field term) to evaluate how well the reconstructed poses match the
observed depth data. The results are highly accurate because our
system leverages depth data from multiple cameras, foot pressure
data, detailed full-body geometry, and environmental contact con-



Figure 3: Full-body kinematic and dynamics data acquisition.
(left) reference image; (middle) the reconstructed 3D kinematic
pose superimposed on observed depth and pressure data (blue
lines); (right) the reconstructed pose, contact force (red arrows)
and torsional torque (yellow arrows) applied at the center of pres-
sure (red spheres).

Figure 4: Full-body shape modeling. (left) “A”-pose of the subject;
(middle) the subject’s 3D body shape reconstructed from observed
depth data; (right) the reconstructed body shape under a new pose
obtained from our motion acquisition system.

straints. Figure 3 (middle) shows the reconstructed kinematic pose
that matches both observed depth data and foot pressure data.

Physics-based motion optimization. Acquiring full-body dynam-
ics data requires computing both contact forces and joint torques
across the entire motion sequence. To achieve this goal, we in-
troduce an efficient physics-based motion reconstruction algorithm
that solves contact forces and joint torques as a quadratic pro-
gramming problem. During reconstruction, we leverage Newtonian
physics, friction cone constraints, contact pressure information, and
3D kinematic poses to reconstruct contact forces and joint torques
over time. Figure 3 (right) shows the reconstructed contact forces
and torsional torques applied at the center of pressure.

Full-body shape modeling. Reconstructing the body shape of the
subject is important to our task because our kinematic tracking
process relies on the full-body geometry to measure how well the
reconstructed skeletal poses match the observed depth data. Fur-
thermore, incorporating physical constraints into the reconstruction
process requires the shape of the human subject to estimate the mo-
ment of inertia of each body segment. To address this challenge,
we automatically construct a skinned full-body mesh model from
the depth data obtained by three Kinect cameras so that the full-
body mesh model can be deformed according to pose changes of
an underlying articulated skeleton using Skeleton Subspace Defor-
mation (SSD). Each user needs to perform the shape modeling step
only once (Figure 4).

Figure 5: Data acquisition. (left) three Kinect cameras and a pair
of pressure-sensing shoes; (right) input data to our motion cap-
ture system includes the point cloud obtained by three cameras and
pressure data (blue lines) recorded by pressure sensors.

4 Data Acquisition and Preprocessing

Our system captures full-body kinematics and dynamics data using
three synchronized depth cameras and a pair of pressure-sensing
shoes (Figure 5). In our experiment, Kinect cameras are used for
motion capture but other commercially available depth cameras
could be used as well.

Depth data acquisition. Current commercial depth cameras are
often low-cost and can record 3D depth data at a high frame rate.
A number of options exist; our system uses three Microsoft Kinect
cameras, which cost roughly around five hundred dollars. Each
camera returns 320 by 240 depth images at 30 frames per second
(fps) with a depth resolution of a few centimeters. The three cam-
eras are arranged uniformly in a circle with a radius of about 3 m,
pointing to the center of the circle. The camera height is about 1 m.
We found that this camera configuration yields the best trade-off
between capture volume and depth data accuracy. We also found
that in this configuration, interference of structured lights between
cameras is not a major issue because each camera receives very lit-
tle infrared (IR) light from other cameras. Most of the IR light is
reflected back by the subject and most of the remaining IR light
does not reach other cameras due to the large angle (120 degrees)
and large distance (2.6 m) between cameras.

Pressure data acquisition. The subject wears a pair of shoes dur-
ing data acquisition. The insole of each shoe is equipped with eight
highly accurate Tekscan [2014] Flexiforcer sensors (the accuracy
is linear within ±3% of full scale) that correspond to eight points
on the feet as shown in Figure 6. These sensors act as force-sensing
resistors which are connected to a small microprocessor board en-
closed and attached to the top of the shoe. Data is transmitted via a
wireless Bluetooth connection at 120 fps.

Data synchronization. We connect each depth camera to a dif-
ferent computer and connect the pressure shoes to one of them. We
synchronize each computer’s system time using Network Time Pro-
tocol (NTP). Data from different devices is synchronized by align-
ing timestamps to the timeline of the first camera. The Network
Time Protocol provides very high accuracy synchronization in the
local network, usually 5 – 10 ms in our experiments. This accuracy
is sufficient for synchronization between Kinect sensors since the
time interval between Kinect frames is about 33.3 ms. The pressure-
sensing shoes are running at a much higher frame rate (120 fps),
hence picking the frame with the closest timestamp for alignment
usually gives satisfactory results.

Depth camera calibration. Reconstructing 3D body poses using
multiple depth cameras requires computing the relative positions
and orientations of each depth camera. For depth camera calibra-
tion, we use a large calibration box to find the rigid transforma-
tions between three cameras by aligning visible faces of the box



Figure 6: Insoles of our pressure-sensing shoes. (left) Tekscan
[2014] Flexiforcer pressure sensors on the insole of the shoes;
(right) corresponding assignments for the sensors.

and their intersection points. The calibration box is color coded
so that each face/plane can be easily identified in RGBD images.
Briefly, we first detect each plane of the box by using color de-
tection and RANSAC techniques. We then extract the intersection
point of three neighboring faces (or two neighboring faces and the
ground plane) which are visible to the same camera. We align the
intersection points from different cameras based on the known ge-
ometry of the calibration box. We move the box around in the scene
to get a sufficient number of constraints to solve for the transforma-
tion matrices.

Depth data filtering. Given the calibrated camera parameters and
the timestamps of each camera, we align the depth data from the
three cameras to obtain a point cloud of the subject at each frame
using the rigid transformations obtained from the calibration step
(see Figure 5 (right)). We introduce a simple yet effective filtering
technique to reduce noise in point cloud data. Specifically, we first
build a neighbor graph, each node of which represents a point from
the point cloud. We connect two nodes if their distance is smaller
than a threshold. We obtain the filtered point cloud by extracting the
largest connected components from the neighbor graph. This pro-
cess usually does not discard noisy points close to the body, but we
have found that these points do not affect the accuracy of our full-
body tracking process. Combining depth data with pressure data
for kinematics and dynamics data capture also requires enforcing
ground contact constraints. To this end, we extract the 3D ground
plane by applying RANSAC technique [Fischler and Bolles 1981]
to the observed depth data.

Full-body pose representation. We use a skinned mesh model to
approximate full-body geometry of human subjects (see Section 7).
This mesh is driven by an articulated skeleton model using Skele-
ton Subspace Deformation (SSD). The skinned mesh model con-
tains 6449 vertices and 12894 faces; and our skeleton model con-
tains 24 bone segments. We describe a full-body pose using a set
of independent joint coordinates q ∈ R36, including absolute root
position and orientation as well as the relative joint angles of indi-
vidual joints. These bones are head (1 Dof), neck (2 Dof), lower
back (3 Dof), and left and right shoulders (2 Dof), arms (3 Dof),
forearms (1 Dof), upper legs (3 Dof), lower legs (1 Dof), and feet
(2 Dof).

5 Kinematic Pose Tracking

We now describe our kinematic pose tracking algorithm that se-
quentially reconstructs 3D human poses from observed point cloud
and pressure sensor data. We formulate the sequential tracking
problem in an efficient optimization framework and iteratively reg-
ister a 3D skinned mesh model with observed data via linear system
solvers. In the following section, we explain how to incorporate
point cloud, pressure data, full-body geometry, contact constraints
and pose priors into our tracking framework.

Let Oi be the point cloud obtained from Kinect cameras and Si be
the readings from pressure sensors at the current frame i. We want
to estimate from Oi and Si the skeletal poses qi for the current frame
given previously reconstructed poses qi−1, ...,qi−M . Dropping the
index i for notational brevity, we aim to estimate the optimal skele-
tal poses q∗ that best match observed data O and S.

We estimate the full-body kinematic poses by minimizing an objec-
tive function consisting of five terms:

min
q

λ1ESDF +λ2EBoundary +λ3EPD +λ4EGP +λ5EPrior, (1)

where ESDF , EBoundary, EPD, EGP and EPrior represent the signed
distance field term, boundary term, pressure data term, ground pen-
etration term and prior term, respectively. The weights λ1, ...,λ5
control the importance of each term and are experimentally set to 2,
2, 100, 100, and 0.1, respectively. We describe details of each term
in the following subsections.

5.1 Signed Distance Field Term

We adopt an analysis-by-synthesis strategy to evaluate how well the
hypothesized pose q matches the observed point cloud O. Specif-
ically, given a hypothesized joint angle pose q, we first apply the
corresponding transformation Tq obtained by forward kinematics
to each vertex of the skinned mesh model to synthesize 3D geo-
metric model of the human body. Given the calibrated camera pa-
rameters, we can further project the posed 3D mesh model onto the
image plane and render the hypothesized depth images from each
viewpoint. The hypothesized point cloud is formed by aligning the
rendered depth images from each viewpoint.

So how can we evaluate the distance between the observed and hy-
pothesized point clouds? This often requires identifying the cor-
respondences between the two sets of depth points. Previous ap-
proaches (e.g., [Knoop et al. 2006; Grest et al. 2007]) often apply
Iterative Closest Points (ICP) method to find the correspondences
between the two data sets. However, ICP techniques often produce
poor results for human pose registration (for details, see our evalua-
tion in Section 8.2). To address this challenge, we propose to com-
pute signed distance fields from the two point clouds and register
the hypothesized and observed signed distance fields via 3D im-
age registration techniques, thereby avoiding building explicit cor-
respondences between the hypothesized and observed point clouds.

A signed distance field (SDF) [Curless and Levoy 1996] is often
represented as a grid sampling of the closest distance to the sur-
face of an object described as a polygonal model. SDFs are widely
applied in computer graphics and have been used for collision de-
tection in cloth animation [Bridson et al. 2003], multi-body dynam-
ics [Guendelman et al. 2003], and deformable objects [Fisher and
Lin 2001]. In our application, we compute SDFs from the point
clouds and apply them to iteratively register the hypothesized joint
angle pose q with the observed point cloud O.

We define the SDF on a 50× 50× 50 regular grid in three dimen-
sional space. We define the voxel values of the signed distance field
V from a point cloud C as follows:

V (pi) = fs(pi) ·min
r∈C
‖pi− r‖2, (2)

where pi is the coordinates of the center of the ith voxel V i, r is a
point in the point cloud C, and

fs(p) =

{
−1, if p inside;
1, if p outside.

(3)



That is, for a volume V , each voxel V i represents its smallest signed
distance to the point cloud C.

We compute the SDF of the observed point cloud in two steps. We
first obtain the value of each voxel by searching the closest points
in the point cloud. The sign of the voxel value is determined by
projecting the voxel V i onto each of the depth images and compar-
ing the projected depth value dpro j with the corresponding depth
value do in each of the observed depth images. We set the sign to
be negative if dpro j > do for all three images. The sign is set to be
positive if do does not exist or dpro j < do for any image. The SDF
of the hypothesized point cloud is computed in a similar way.

Once we compute the SDFs for the hypothesized and observed
point clouds, we can use them to evaluate the following term in
the objective function:

ESDF (q) = ∑
i∈SSDF

‖V i
R(q)−V i

O‖
2, (4)

where V i
R(q) is the value of the ith voxel of the hypothesized SDF

and it depends on the hypothesized skeletal pose q. V i
O is the voxel

value of the ith voxel of the observed SDF, and SSDF includes the
indices of all the voxels used for evaluating ESDF . Note that not all
the voxels are included for evaluation. In our implementation, we
exclude voxels with zero gradients because they do not contribute to
the pose updates. To speed up the tracking system, we also ignore
the voxels that are far away from the surface of the rendered skinned
mesh model as they provide little guidance on the tracking process.

A major benefit of the signed distance field term is that it merges
all the observation information from depth cameras, including both
depth and boundary information. This significantly reduces ambi-
guity for 3D pose reconstruction. In our experiment, we have found
that using a coarse resolution SDF is often sufficient for tracking
3D poses since it provides us a large number of constraints, even
more than using the point clouds itself, due to the use of informa-
tion inside and outside the point clouds. Another benefit of the SDF
term is that the function ESDF (q) is continuous and smooth, which
makes the gradient differentiable everywhere with respect to the
hypothesized pose q. This property is particularly appealing to our
pose tracking solver because we apply gradient-based optimization
to do the pose tracking. As shown in our results, our method pro-
duces more accurate results than alternative solutions such as ICP
(e.g., [Knoop et al. 2006; Grest et al. 2007]) and model-based depth
flow [Wei et al. 2012].

5.2 Boundary Term

In practice, even with ground truth poses, the hypothesized point
cloud might not precisely match the observed point cloud due to
camera noise, cloth deformation, calibration errors and blurry depth
images caused by fast body movements. Therefore, the signed dis-
tance field term alone is often not sufficient to produce satisfactory
results, particularly when significant occlusions occur. This mo-
tivates us to introduce the boundary term to further improve the
tracking accuracy.

Intuitively, the boundary term minimizes the size of non-
overlapping regions between the hypothesized and observed point
clouds. To be specific, we penalize the distances between the hy-
pothesized points p(q) in the non-overlapping region and their clos-
est points p∗ from the observed point cloud. We have

EBoundary(q) = ∑
p∈SB

‖p(q)−p∗‖2. (5)

A critical issue for the boundary term evaluation is to determine
which points in the hypothesized point cloud should be included for

evaluation (i.e., SB). Our evaluation considers all the points in non-
overlapping regions of the hypothesized and observed depth images
from each camera viewpoint. This ensures that the hypothesized
point cloud moves towards the observed point cloud to reduce the
size of non-overlapping regions as quickly as possible.

In our implementation, we search the closest points based on a
bidirectional distance measurement in order to ensure one-to-one
correspondences. For observed depth points in non-overlapping re-
gion, we first find the closest points in the hypothesized point cloud.
Then for the hypothesized depth points who have multiple corre-
spondences, we pick the one with the largest distance to ensure
a one-to-one correspondence. Correspondences for hypothesized
depth points are determined similarly.

5.3 Pressure Data Term

Depth data alone is often not sufficient to accurately reconstruct
the movement of both feet because the observed depth data is often
very noisy. The most visible artifact in the reconstructed motion is
footskate, which can be corrected by existing methods if the foot-
plants are annotated [Kovar et al. 2002]. However, footplant con-
straints are extremely hard to derive from noisy depth image data.
To address this challenge, we complement depth data with pres-
sure data obtained from a pair of pressure-sensing shoes. When a
pressure sensor is “on”, we can enforce the corresponding footplant
constraints on pose reconstruction.

Under the assumption that the only contact the feet have is with the
ground plane, we define the pressure data term as follows:

EPD(q) = ∑
m

bmdist(pm(q),GF ), (6)

where the function dist measures the distance between the global
coordinates of the mth pressure sensor pm(q) and the 3D ground
plane GF . Here the local coordinates of each pressure sensor are
known in advance so that we can apply forward kinematics to map
the local coordinates of the mth pressure sensor to its global 3D
coordinates pm(q) under the current pose q. In our implementation,
we use a binary variable bm to indicate whether the mth pressure
sensor is “on”. This variable provides a means to exclude erroneous
non-zero pressure data that can be received even when airborne.
Such readings can occur because the sensors are attached to the
insole of the shoe rather than the exterior of the shoe sole.

We adopt a simple yet effective rule to determine if a particular
pressure sensor is “on” or “off”. At each iteration of kinematic
pose optimization, we evaluate whether the pressure sensor is “off”
based on the following two criteria: (1) we consider all the pressure
sensors from a foot as “off’ if the sum of pressure values is smaller
than a threshold ε1 and (2) we consider a particular pressure sensor
is “off” if its vertical position in the previous iteration of kinematic
pose optimization is above the ground plane and its distance to the
ground plane is larger than a threshold ε2. We experimentally set
ε1 and ε2 to 0.008 and 0.05 m, respectively.

5.4 Ground Penetration Term

The pressure data term alone often cannot avoid foot-ground pene-
tration. This is because we model each foot using a detailed mesh
model and therefore a small number of contact points are often not
sufficient to avoid ground penetration. We introduce the ground
penetration term to address this issue.

We sample a set of points n = 1, ...N on each foot and prevent them
from penetrating into the ground. In particular, we penalize the



penetration between the foot and the ground GF , resulting in the
following objective term:

EGP(q) = ∑
n
‖ fp(pn(q),GF )‖2, (7)

fp(pn(q),GF ) =

{
0, if no penetration;
dist(pn(q),GF ), otherwise.

(8)

where pn(q) is the global coordinates of the nth contact point on
the foot. Like the pressure data term, the function dist measures
the distance between the global coordinates of the nth contact point
pn(q) and the 3D ground plane GF .

5.5 Prior Term

We incorporate the prior term into our tracking process for two rea-
sons. First, the depth data is sometimes ambiguous because of sig-
nificant occlusions, camera noise, cloth deformation or blurry depth
images caused by fast body movements. Second, the reconstructed
joint angle poses may violate the joint limits. We utilize subspace
pose priors embedded in a highly varied motion capture database to
solve this problem.

We construct separate PCA models for the pose of each body part
(arms, shoulders, spines, legs and feet). The training data we use is
from the CMU mocap database, which includes 4.6 hours of highly
varied motions. We use the constructed PCA models to constrain
the solution space of kinematic tracking. In our implementation,
we enforce the subspace constraints as soft constraints, resulting in
the following objective term:

EPrior(q) = ‖PT
k (Pk(q−µ))+µ−q‖2, (9)

where Pk is the first k principal components of the PCA model and
µ is the mean vector of the PCA model. The numbers of dimension
of the PCA models (k) are automatically determined by keeping
95% of original variations.

We have found that enforcing such weak PCA priors allow us to
achieve similar results as the joint limit constraints while still en-
abling us to optimize the pose using iterative linear solvers.

5.6 Kinematic Pose Reconstruction

Solving the objective function described in Equation (1) requires
minimizing a sum of squares of non-linear functions. We apply
a Gauss-Newton gradient descent optimization algorithm to solve
this problem. Given a known, current estimate of q, we itera-
tively solve for increments to the parameters δq using linear sys-
tem solvers. Note that our kinematic pose tracking process is fully
automatic as we initialize the pose at the first frame using Microsoft
Kinect for Windows [2014].

For each subsequent time step, we initialize the current pose using
the previously estimated pose and iteratively perform the following
steps until the change of the pose is smaller than a specified thresh-
old:

• Step 1: Given the current pose q and the full-body skinned
mesh model, we render the depth images DR(q) from each
camera viewpoint. For a point p ∈ R in the rendered depth
image, we use OpenGL’s selection buffer to determine which
bone segments the point is associated with as well as the lo-
cal coordinates of the corresponding surface point. This step

is necessary for evaluating the partial derivatives ∂p/∂q be-
cause the global coordinates of surface points are dependent
on both the local coordinates and associated bone segments.

• Step 2: We compute the hypothesized and observed signed
distance fields VR and VO based on the point clouds CR and CO
obtained from the hypothesized and observed depth images
DR(q) and DO(q) (see Equation (2)).

• Step 3: We calculate the gradients of the hypothesized signed
distance field and other partial derivatives in Equations (4),
(5), (6), (7) and (9) to form linear equations (for details, see
Appendix A).

• Step 4: We compute the optimal increment δq using linear
system solvers and update the current pose: q = q+δq.

The algorithm usually converges within 10 iterations as we initial-
ize the solution using previous reconstructed poses. The output of
the kinematic tracking process includes kinematic pose q at cur-
rent frame as well as contact states (bm) and global 3D coordinates
(pm(q)) of each pressure sensor.

6 Physics-based Motion Optimization

In this section, we describe how to reconstruct full-body dynam-
ics data using both observed pressure data and reconstructed kine-
matic motion data obtained from Section 5. We formulate this
as a quadratic programming problem and seek optimal values for
internal joint torques and contact forces that best match observed
pressure data and reconstructed kinematic poses as well as contact
states. Similar to the kinematic tracking process, we solve the full-
body dynamics reconstruction process in a sequential manner.

Full-body dynamics. The Newtonian dynamics equations for full-
body movement can be defined as follows:

M(q)q̈+C(q, q̇)+h(q) = u+JT f, (10)

where q, q̇, and q̈ represent the joint angle poses, velocities and
accelerations, respectively. The quantities M(q), C(q, q̇) and h(q)
are the joint space inertia matrix, centrifugal/Coriolis and gravita-
tional forces, respectively. The vectors u and f are joint torques
and contact forces respectively. The contact force Jacobian matrix
J maps joint velocities to world space cartesian velocities at the
contact points. Human muscles generate torques about each joint,
leaving global position and orientation of the body as unactuated
joint coordinates. The movement of global position and orienta-
tion is controlled by contact forces f. Modifying those coordinates
requires contact forces f from the environment.

Enforcing Newtonian dynamics constraints requires computing the
mass and moment of inertia of each body segment. To achieve this
goal, we first reconstruct a full-body skinned mesh model to ap-
proximate the whole-body geometry of the subject (see Section 7).
We then voxelize the reconstructed skinned mesh model. For each
voxel, we compute its geodesic distance to all bone segments and
associate it with a particular bone segment that is closest to the
voxel. Assuming the weight of the subject is known, we can es-
timate the density of a subject’s body and use it to compute the
physical quantities of each bone segment, including mass and mo-
ment of inertia.

Friction cone constraints. During ground contact, the feet can
only push, not pull on the ground, contact forces should not require
an unreasonable amount of friction, and the center of pressure must
fall within the support polygon of the feet. We use Coulomb’s fric-
tion model to compute the forces caused by the friction between
the character and environment. A friction cone is defined to be the



range of possible forces satisfying Coulomb’s function model for
an object at rest. We ensure the contact forces stay within a basis
that approximate the cone with nonnegative basis coefficients. We
model the contact between the foot and ground using eight contact
points (see Figure 6), which are consistent with the locations of
pressure sensors. This allows us to represent the contact forces f as
a linear function of nonnegative basis coefficients:

f(w1, ...,w8) =
8

∑
m=1

Bmwm subject to wm ≥ 0, (11)

where the matrix Bm is a 3×4 matrix consisting of 4 basis vectors
that approximately span the friction cone for the m-th contact force.
The 4× 1 vector wm represents the nonnegative basis weights for
the m-th contact force.

Pressure data. Each pressure sensor records an analog resistance
reading proportional to the applied pressure, which is then con-
verted to a digital value. The relationship between the analog resis-
tance reading Rm and the digital pressure force value Pm returned is
defined as follows:

Pm = km/Rm, (12)

where km is a scaling parameter for each sensor and assumed to be
unknown.

Full-body dynamics reconstruction. We formulate full-body
dynamics reconstruction in a quadratic programming framework.
Given observed pressure data Rm and reconstructed kinematic poses
q and contact states bm obtained from the tracking process, the op-
timization simultaneously computes joint torques u, contact forces
f(w) and pressure sensors coefficients k = [k1, ...,k8]

T that maxi-
mize the performance of the following multiobjective function:

argminu,w,k Epressure(w,k)+λ1Ereg(k)+λ2Etorque(u)
subject to M(q)q̈+C(q, q̇)+h(q) = u+JT f(w),

w≥ 0.
(13)

In the above, the first term Epressure evaluates the consistency
between the reconstructed contact forces and observed pressure
forces. Specifically, the pressure term is defined as follows:

Epressure = ∑bm|| fm,⊥− km/Rm||2, (14)

where fm,⊥ is the vertical component of the reconstructed contact
force at the mth sensor. And Rm and km are the reading and scale of
the mth pressure sensor.

The second term Ereg is a regularization term that ensures the scal-
ing parameters of all the pressure sensors are as close as possible.
This is achieved by minimizing the variance of the scale parameters
for all the “on” pressure sensors:

Ereg =
1

(∑bm−1) ∑bm(km−
∑bmkm

∑bm
)2. (15)

The third term Etorque minimizes the sum of squared torques at the
current frame. The optimization is also subject to the discretization
of Newtonian dynamics equations determined by a finite difference
scheme and friction cone constraints w≥ 0.

In our implementation, we use the backward difference approxi-
mation to compute joint velocities and use the central difference
approximation to compute joint accelerations with δ t set to 1/30 s.
We solve the optimization problem using quadratic programming.

7 Full-body Shape Modeling

This section describes how to reconstruct full-body mesh models
of human subjects using a small number of depth images captured
by three Kinect cameras. We model full-body geometry of human
subjects as a skinned mesh model. We introduce an efficient full-
body shape modeling technique that automatically reconstructs a
detailed skinned mesh model of a subject using the depth data ob-
tained from three Kinect cameras. Each user needs to perform this
step only once. Note that the user should not wear overly loose
clothing like skirt for modeling, as it will mislead the system and
produce an inaccurate shape model for estimating physical quanti-
ties of human bodies.

7.1 Shape Representation

Our human body model is based on statistical analysis of a database
of pre-registered 3D full-body scans [Allen et al. 2003]. In particu-
lar, we apply PCA to hundreds of aligned body scans [Hasler et al.
2009] to construct a low-dimensional parametric model for human
body representation. We represent human body geometry using a
mean mesh model A and a weighted combination of eigen mesh
basis P:

M(X) = PX+A, (16)

where M = [x0,y0,z0,x1,y1,z1, . . . ,xn,yn,zn] is a long vector stack-
ing all the vertices of the mesh model and X is the low-dimensional
shape parameter to represent a full-body geometric model.

We further build a skinned mesh model for the registered mesh
model so that the mesh model can be deformed according to pose
changes of an underlying articulated skeleton using Skeleton Sub-
space Deformation (SSD).

7.2 Shape Reconstruction

To reconstruct a full-body skinned mesh model for the subject, we
instruct the user to perform a reference pose (“A” -pose, see Figure
4) for about one second. As a result, we obtain three sequences
of depth images. Our goal herein is to reconstruct both full-body
poses and full-body geometry from the recorded depth image se-
quences. We formulate the problem as an optimization and seek to
find the optimal shape parameter X and skeletal pose q that best fit
the observed point cloud C:

X∗,q∗ = argmin
X,q ∑

i
‖pi(PX+A)

⊕
Tq−p∗i ‖2, (17)

where pi(M) is 3D coordinates of the ith vertex of the parametric
mesh model M and p∗i is the 3D coordinates of the closest point of
pi in C. The operator

⊕
applies the corresponding transformation

Tq to each vertex of the surface mesh model pi(M) to obtain 3D
full-body geometric model under the pose q.

We have found that direct optimization of the cost function is not
efficient and the optimization is prone to falling into local minima.
To address this issue, we introduce an iterative optimization algo-
rithm to decompose the large optimization problem into two smaller
problems that can be solved efficiently. We initialize the pose using
the “A” -pose. In each iteration, we keep one group of the unknowns
unchanged and search for an optimal update for the other group of
unknowns.

Non-rigid shape estimation. In this step, we estimate the shape
parameter X from the observed point cloud while keeping the pose
q∗ constant. This requires solving the following optimization prob-
lem:

X∗ = argmin
X ∑

i
‖pi(PX+A)

⊕
Tq∗ −p∗i ‖2. (18)



Figure 7: Comparison against [Wei et al. 2012]. (top) results
obtained from [Wei et al 2012]; (bottom) our results.

We extend iterative closest points (ICP) techniques to iteratively es-
timate the shape parameter X. Briefly, we search the closest points
for each vertex of the current mesh model M(X) on the observed
point cloud and use them to update the shape parameter X with
least-square fitting techniques.

Skeletal pose update. We fix the shape parameter X and use it
to update the skeletal pose q based on the observed point cloud.
This problem can be solved efficiently using the kinematic tracking
algorithm described in Section 5.

8 Results

In this section, we demonstrate the power and effectiveness of our
system by capturing a wide range of human movements using our
proposed system (Section 8.1). Our comparison against alterna-
tive methods shows the system achieves state-of-the-art accuracy
(Section 8.2 and 8.3). We assess the performance of our kinematic
tracking process by dropping off each term in the cost function
(Section 8.4). We validate the quality of dynamics data obtained
from our system by comparing joint torques patterns obtained from
our system against those reconstructed from the Vicon system and
force plates (Section 8.5). Our results are best seen in the accom-
panying video.

Computational times. For the current implementation, our kine-
matic tracking and physics-based optimization process run at 6 fps.
It takes three seconds to complete the offline full-body shape mod-
eling process.

8.1 Test on Real Data

We have tested our system on a wide variety of human actions,
including walking, running, jumping, dancing, and sport activities
such as basketball, baseball and boxing. The accompanying video
shows the performance of our system on a large number of com-
plex and fast motions that a single camera could not capture, such
as jumping with a 360 degree rotation and kicking while rotating.
We also demonstrate the robustness of our system on several long
sequences like boxing, stealing and dancing.

Figure 8: Comparison against ICP algorithms. (top) results from
ICP algorithm; (bottom) our results.

8.2 Comparisons against Alternative Methods

We have evaluated the effectiveness of our kinematic tracking sys-
tem by comparing against alternative full-body tracking methods. It
is worth pointing out that our whole motion capture system can au-
tomatically and accurately capture internal joint torques and contact
forces, as well as contact locations and timings, across the entire
sequence, a capability that has not been demonstrated in alternative
tracking systems.

Comparison against [Wei et al. 2012]. We compare our system
against the state-of-the-art in full-body motion capture using a sin-
gle depth camera [Wei et al. 2012]. For a fair comparison, we first
extend their tracking algorithm to multiple Kinect cameras by com-
bining all the information obtained from three depth cameras. The
accompanying video highlights a side-by-side comparison between
the two systems. Figure 7 shows the advantage of our system.

Comparison against ICP techniques. We compare our 3D kine-
matic tracking process described in Section 5 against Iterative Clos-
est Point (ICP) techniques [Knoop et al. 2006; Grest et al. 2007].
Specifically, we apply ICP to minimize the distances between the
observed point cloud obtained from three depth cameras and the
hypothesized point cloud rendered from the skinned mesh model
by iteratively finding the closest correspondences between them.
We start both methods with the same initial pose. The accompa-
nying video clearly shows that our tracking process is much more
robust and accurate than the ICP algorithm. In the jumping example
shown in Figure 8, our tracking process successfully tracks the en-
tire motion sequence while ICP fails to track most of frames. This
is because ICP is often very sensitive to initial poses and prone to
local minima, particularly when tracking high-dimensional human
body poses from noisy depth data.

Comparison against Vicon [2014]. In this experiment, we quan-
titatively assess the quality of the captured motion by comparing
against motion data captured with a full marker set in a twelve-
camera Vicon system [2014]. The average reconstruction error,
which is computed as the average 3D joint position discrepancy
between the estimated poses and the ground truth mocap poses, is
about 3.8 cm per joint per frame. Figure 9 shows a side-by-side
comparison between our result and the result obtained by Vicon.



Figure 9: Comparison against Vicon [2013]. (top) results from
a twelve-cameras Vicon system [2013] with a full set of markers;
(middle) our results with a skeleton model; (bottom) our results
with a skinned mesh model.

8.3 Quantitative Evaluation

We quantitatively evaluate the reconstruction accuracy and robust-
ness of our system by comparing against four alternative meth-
ods, including our algorithm without pressure data, [Wei et al.
2012], [Microsoft Kinect API for Windows 2014] and ICP, on six
different actions. The ground truth data is obtained by motion
data captured with a twelve-camera Vicon system in a full marker
set. For a fair comparison, we include the prior term in all alter-
native methods except [Microsoft Kinect API for Windows 2014].
For [Microsoft Kinect API for Windows 2014], we obtain separate
poses from three depth cameras at each frame and choose the pose
closest to the ground truth data as the output.

Reconstruction accuracy evaluation. To evaluate the reconstruc-
tion accuracy, we compute average joint position errors and vari-
ances for each method by comparing against ground truth poses
obtained from the Vicon system (Figure 10). The evaluation shows
that our system produces a much lower error and variance (3.8±
1.3 cm) than [Wei et al. 2012] (5.0±2.2 cm) and Kinect (7.7±2.5
cm). Among all the methods, ICP produces largest errors for all
the test data. The evaluation also shows that complementing depth
data with pressure data improves the accuracy from 4.1± 1.3 cm
to 3.8± 1.3 cm. Figure 11 compares average reconstruction errors
of each joint for our method, [Wei et al. 2012] and Kinect system.
Our system produces more accurate reconstruction results than two
alternative methods for all the joints.

Robustness evaluation. To evaluate the system robustness, we
compute the percentage of failure frames for each motion. Here
we define a reconstructed frame as “failure” if the average joint po-
sition discrepancy is larger than 6 cm. Figure 12 shows that our
system produces a much lower failure rate (5.9%) than alterna-
tive methods (14.9% for [Wei et al. 2012] and 68.3% for Kinect
[2014]).

8.4 Evaluation of Kinematic Pose Tracking Process

We have evaluated the importance of key components of our kine-
matic tracking process by dropping off each term in Equation (1).

Importance of the boundary term. We evaluate the importance of
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Figure 10: Evaluation of reconstruction accuracy (average joint
position errors and variances) for five methods on six test actions.
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Figure 12: Evaluation of system robustness (percentage of frames
whose average reconstruction error is larger than 6 cm) on six test
sequences.

the boundary term by comparing the results with and without this
term. Figure 13 clearly shows the importance of the boundary term.

Importance of the pressure data/ground penetration term. Fig-
ure 14 shows a side-by-side comparison with and without the pres-
sure data/ground penetration term. The term is critical to our system
for two reasons. First, it enables us to remove foot skating artifacts
and avoid the ground penetration issue in the reconstructed kine-
matic motion. Second, it significantly reduces the reconstruction
ambiguity of full-body dynamics.

Importance of the prior term. Figure 15 shows a side-by-side
comparison with and without the prior term. The use of the prior
term improves the reconstruction accuracy of full-body poses, par-
ticularly the torso part in this example.

8.5 Comparison against Vicon and Force Plates

We have validated the effectiveness of our dynamic data capture
process by comparing the reconstructed internal torques with those
obtained from a twelve-camera Vicon system in a full marker set
and force plates. We capture 120 walking sequences using the Vicon
system and force plates and reconstruct the internal joint torques
based on the recorded force data from force plates and the full-body
kinematic motion data obtained from the Vicon system via inverse
dynamics technique. Figure 16 (a) plots internal joint torques of the
left knee from 120 walking sequences (blue curve). We repeat the
captured motion five times and extract the joint torque patterns of
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Figure 11: Average joint reconstruction errors and variances on six action sequences.

Figure 13: Importance of the boundary term. (top) result without
the boundary term; (bottom) result with the boundary term.

Figure 14: Importance of the pressure data/ground penetration
term. (top) result without the pressure data/ground penetration
term; (bottom) result with the pressure data/ground penetration
term.

Figure 15: Importance of the prior term. (top) result without the
prior term; (bottom) result with the prior term.

the left knee by temporally aligning and averaging 120 sequences
(red curve in Figure 16 (a)).

We capture a walking sequence of a different subject using our full-
body kinematics and dynamics capture system. Figure 16 (b) shows
a plot of internal joint torque of the left knee for a single walking
cycle of the reconstructed dynamic data (blue curve). The figure
shows that our reconstruction data (blue curve) has very similar
patterns as those (red curve) obtained from the Vicon system and
force plates.

9 Conclusion

In this paper, we have developed an end-to-end full-body motion
capture system using input data captured by three depth cameras
and a pair of pressure-sensing shoes. Our system is appealing be-
cause it is low-cost and fully automatic, and can accurately recon-
struct full-body kinematics and dynamics data. The system is also
non-intrusive and easy to set up because it requires no markers and
no special suits. We have demonstrated the power of our approach
by capturing a wide range of complex human movements. The sys-
tem achieves state-of-the-art accuracy in our comparison against
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Figure 16: Validation of reconstructed dynamic data. (a) internal torque patterns (red curve) obtained by temporally aligning and averaging
120 walking sequences captured by the Vicon system and force plates; (b) internal joint torques patterns (blue curve) from our result
superimposed on internal torque patterns (red curve) obtained from the Vicon system and force plates.

alternative methods.

Complementing depth data with pressure data not only improves
the accuracy and robustness of the kinematic tracking process but
also enables us to automatically capture and reconstruct full-body
poses, joint torques, and contact forces all at once. The current
system is based on three depth cameras and our own version of pro-
totype pressure sensors. Our framework, however, is flexible and is
not limited to particular types of sensors. For example, any pressure
sensor commercially available (e.g., Tekscan F-Scan [2014]) could
be plugged into our system. We could also replace three depth cam-
eras with a single consumer-level video camera to acquire motions
difficult to capture in the lab, such as a run on the beach or a boxing
match.

We choose to reconstruct human body kinematic data and dynamic
data in a sequential manner because we are focused on online ap-
plications. An alternative solution is to use batch-based optimiza-
tion [Wei and Chai 2010] to reconstruct kinematics and dynamics
data for a certain period of time. For our application, however,
batch-based optimization is very time consuming and memory-
intensive because it requires solving a complex non-linear opti-
mization with a huge number of constraints. We have also chosen
to sequentially reconstruct kinematics and dynamics data because
kinematic motion data obtained from the tracking process are of-
ten highly accurate and often sufficient to reconstruct the dynamics
data. If the kinematic motion data are not reliable, a better solution
is to use all the observed data, along with physical constraints, to
simultaneously optimize kinematic and dynamic variables. This in-
evitably requires solving a more challenging optimization problem
and certainly will slow down the entire reconstruction process.

Our full-body shape modeling process enables our system to work
for human subjects of different body sizes and proportions. In the
future, we would like to include more body scans into the train-
ing data sets to improve the generalization ability of our parametric
model, as the current training data sets are still not sufficient to
model shape variations across all the human subjects. Another way
to improve the accuracy and robustness of the system is to combine
depth data with color image data. We are particularly interested in
incorporating color and texture information obtained from a video
camera into the current tracking framework.

Our system often fails to produce good results when a large portion
of depth data is missing (e.g., when a large part of the body is out of
the camera range) or when significant occlusions occur (e.g., when
the hands is extremely close to the torso that it cannot be distin-
guished from the subject’s torso). Another limitation of the current
system is that it can only capture contact phenomena between feet
and the ground. The current system is not suitable to capture mo-
tion with complex contact phenomena such as falling down to the
ground and rolling on one’s back. In the future, we wish to explore
how to capture full-body kinematics and dynamics data for these
kinds of motions. We are also interested in extending the current
system to capture interaction between multiple subjects.

We believe the new type of data captured by our system will provide
insights into designing controllers for simulated virtual humans and
biped robots, as well as extending our current biomechanics knowl-
edge in motor control. In particular, the captured kinematics and
dynamics data could be leveraged for many applications in human
motion processing, analysis and synthesis, such as motion filtering,
motion editing, motion registration, and physics-based motion con-
trol and optimization. For example, the motion can be cleaned to
remove noise at the level of the driving signal (joint torques), it can
be more accurately edited to meet new constraints, it would allow
us to register the motion more accurately using both kinematics and
dynamics data, it can serve as a basis for development of control al-
gorithms for human movement, and it can be used to build much
more precise models to predict how human takes a compensatory
step to maintain the balance. One of the immediate directions for
future work is, therefore, to investigate the applications of the cap-
tured data to human motion analysis, synthesis and control.

APPENDIX

In this section, we show how to linearize the non-linear expressions
in Equation (4), (5), (6), (7) and (9) so that the non-linear least-
square problem can be iteratively solved via linear system solvers.

Signed distance field term. This term can be linearized by using
first-order Taylor expansion. Suppose we have the pose for previous
frame qi−1, we can get the pose for current frame qi by computing
a δq using an optical flow-like algorithm.



By assuming the constancy of the signed distance value for the vox-
els in the volume, we get

V (p, t) =V (p+δq, t +δ t), (19)

where V (p, t) represents the signed distance value for the voxel at
position p at time t.

For a pose q, we can compute the world coordinate of any point
p(q) on the mesh model by forward kinematics and skeleton sub-
space deformation. Therefore, for any point on the model, we have

V (p(q), t) =V (p(q+δq), t +δ t). (20)

By expanding P(q+∆q) and V (P(q+∆q), t +∆t) using Taylor ex-
pansion, we get

p(q+δq) = p(q)+
∂p
∂q

δq, (21)

V (p(q), t) = V (p(q)+
∂p
∂q

δq, t +δ t)

= V (p(q), t)+
∂V
∂p

∂p
∂q

δq+
∂V
∂ t

. (22)

Hence, we have

∂V
∂p

∂p
∂q

δq =−(Vt+1−Vt), (23)

ASDF δq = BSDF , (24)

where ASDF = ∂V
∂p

∂p
∂q , BSDF = −(Vt+1 −Vt), ∂V

∂p = [ ∂V
∂x ,

∂V
∂y ,

∂V
∂ z ]

is the gradient of the signed distance field, and ∂p
∂q is the Jacobian

matrix for the point p with respect to q.

Boundary, pressure data and ground penetration term. These
terms can be linearized in a similar way. For the corresponding
point pairs pi(q) and p∗i , where pi(q) is the ith point on the model
for pose q, p∗i is the target position of pi(q), we have

pi(q+δq) = p∗i . (25)

We can linearized the left part of the equation and get

pi(q+δq) = pi(q)+
∂pi
∂q

δq = p∗i . (26)

Hence we have

∂pi
∂q

δq = p∗i −pi(q), (27)

AIKδq = BIK , (28)

where AIK =
∂pi
∂q and BIK = p∗i −pi(q).

Prior term. For the prior term EPrior(q), we have

E(q) = PT
k (Pk(q−µ))+µ−q

= (PT
k Pk− I)(q−µ)

(29)

and

E(q+δq) = (PT
k Pk− I)(q+δq−µ)

= APriorδq−APrior(µ−q),
(30)

where APrior = PT
k Pk− I, I is an identity matrix.

E(q+δq) can be solved by ∂E(q+δq)
∂δq = 0, thus we have

∂E(q+δq)
∂δq

= 2E(q+δq)T ∂E(q+δq)
∂δq

= 0, (31)

(APriorδq−APrior(µ−q))T APrior = 0, (32)

AT
PriorAPriorδq = AT

PriorBPrior, (33)

where APrior = PT
k Pk − I is the Jacobian matrix for the term and

BPrior = (PT
k Pk− I)(µ−q).
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