
Synthesis of Concurrent Object Manipulation Tasks

Yunfei Bai∗ Kristin Siu† C. Karen Liu‡

Georgia Institute of Technology

Figure 1: A simulated character manipulating multiple objects concurrently in different scenarios.

Abstract

We introduce a physics-based method to synthesize concurrent ob-
ject manipulation using a variety of manipulation strategies pro-
vided by different body parts, such as grasping objects with the
hands, carrying objects on the shoulders, or pushing objects with
the elbows or the torso. We design dynamic controllers to physi-
cally simulate upper-body manipulation and integrate it with proce-
durally generated locomotion and hand grasping motion. The out-
put of the algorithm is a continuous animation of the character ma-
nipulating multiple objects and environment features concurrently
at various locations in a constrained environment. To capture how
humans deftly exploit different properties of body parts and objects
for multitasking, we need to solve challenging planning and exe-
cution problems. We introduce a graph structure, a manipulation
graph, to describe how each object can be manipulated using dif-
ferent strategies. The problem of manipulation planning can then
be transformed to a standard graph traversal. To achieve the ma-
nipulation plan, our control algorithm optimally schedules and exe-
cutes multiple tasks based on the dynamic space of the tasks and the
state of the character. We introduce a ”task consistency” metric to
measure the physical feasibility of multitasking. Furthermore, we
exploit the redundancy of control space to improve the character’s
ability to multitask. As a result, the character will try its best to
achieve the current tasks while adjusting its motion continuously to
improve the multitasking consistency for future tasks.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: human simulation; physically based animation; mo-
tion planning; optimization; physically based animation

∗e-mail: ybai30@mail.gatech.edu
†e-mail:kasiu@gatech.edu
‡e-mail:karenliu@cc.gatech.edu

Links: DL PDF

1 Introduction

Performing multiple object manipulation tasks concurrently is an
essential human activity in everyday environments. A mundane
morning routine before going to work can involve numerous con-
secutive and concurrent tasks: picking up the briefcase on the floor,
opening the refrigerator to fetch a lunch box, using the elbow to
close the refrigerator door, tucking the lunch box under the arm so
the hand can search for keys in the pocket, and pushing the front
door open by leaning on it. This sequence of tasks, which humans
perform effortlessly, requires sophisticated planning and dynamic
motion control, which have not been broadly explored in physics-
based computer animation or robotics. Unlike existing robots, hu-
mans can employ a variety of manipulation strategies to interact
with objects, such as using their hands, shoulders, elbows, torso,
or even their head. Consequently, synthesizing full-body manipu-
lation requires not only simulating physically realistic joint motion,
but also capturing how humans deftly exploit different properties of
body parts and objects for multitasking.

We introduce a physics-based technique to synthesize human activ-
ities involving concurrent full-body manipulation of multiple ob-
jects. We view full-body manipulation as three interrelated layers
of motor control: locomotion, upper-body manipulation, and de-
tailed hand manipulation. This paper focuses on the second layer
– we design dynamic controllers to physically simulate upper-body
manipulation and integrate it with procedurally generated locomo-
tion and hand manipulation. The main algorithm must overcome
major challenges in both planning and execution.

Planning a valid sequence of manipulation strategies for a character
is difficult because humans have abundant choices for manipulating
an object. To circumvent this issue, our key insight is that, instead

http://doi.acm.org/10.1145/2366145.2366170
http://portal.acm.org/ft_gateway.cfm?id=2366170&type=pdf

of making plans for each end-effector or body part of the charac-
ter, we make plans for each object. We introduce a graph structure,
a manipulation graph, to describe how each object can be manip-
ulated by different strategies. An object’s manipulation graph is
based on its properties and contains a set of nodes, each of which
represents a manipulation strategy (e.g. left hand, left shoulder, etc).
An edge between two nodes represents a valid transition between
two manipulation strategies (e.g. transporting the object from the
left hand to the left shoulder). With the manipulation graph rep-
resentation, the problem of manipulation planning can be conve-
niently transformed to a standard graph traversal.

Executing the manipulation plan has its own challenges. Because
humans tend to act on tasks concurrently to save time or minimize
traveling distance, a successful control algorithm must appropri-
ately schedule multiple tasks, i.e. when to overlap tasks and when
to execute them in succession. Given multiple tasks, we intro-
duce a “task consistency” metric to measure the physical feasibil-
ity of multitasking based on the task spaces and the state of the
character. Using this metric, we formulate a convex optimization
to determine when and how to optimally overlap tasks. Further-
more, the dynamic controller must be general and robust to ex-
ecute arbitrary multiple tasks simultaneously without interfering
with each other. Inspired by the framework of operational space
control [Khatib 1987], we exploit the redundancy of control space
to improve the character’s ability to multitask. Specifically, our al-
gorithm actively solves for an ideal next pose such that the task
space in the next time step is most consistent with desired tasks. As
a result, the character will try its best to achieve the current tasks
while adjusting its motion continuously to improve the ”multitask-
ing consistency” for future tasks.

We present our results as an animation of a character successfully
navigating a cluttered environment, while concurrently manipulat-
ing multiple objects, such as a bag that can be slung over the shoul-
der and books that can be tucked under the arms. Our algorithm
can compute a new plan efficiently according to the changes in any
property of the environment or the objects.

2 Related Work

Effective methods for synthesizing full-body manipulation are
crucial for animating everyday human behaviors. Most previous
work exploited inverse kinematics and motion planning tech-
niques to generate motion that satisfies desired manipulation
tasks. To achieve collision-free motion, these methods applied
path planning algorithms in workspace [Liu and Badler 2003;
Yamane et al. 2004], configuration space [Koga et al. 1994;
Kallmann et al. 2003; Kallmann 2005], or configuration space with
an additional timing dimension [Shapiro et al. 2007]. Using the
search result as guidance, natural-looking, full-body animation
can be synthesized based on heuristics or mocap data. The
general problem of manipulating objects with locomotion has
been studied previously [Feng et al. 2012; Huang et al. 2011;
Stilman et al. 2007]. Our work also produces full-body manipu-
lation, but we focus on human multitasking that exploits various
manipulation strategies concurrently. In addition, we take the
approach of physical simulation instead of kinematic procedures
or motion capture. The simulated motion exhibits more physical
realism for dynamically demanding tasks, such as holding a cup
of water while lifting a heavy handbag. Full-body manipula-
tion is also extensively studied in robotics [Harada et al. 2003;
Takubo et al. 2005; Yoshida et al. 2005; Nishiwaki et al. 2006].
However, due to the physical design and hardware constraints, ex-
isting robots only use predetermined manipulation strategies with
intended manipulators. Consequently, concurrent manipulation
scenarios described in this work have not been broadly explored in

robotics.

The idea of associating interaction information with ob-
jects rather than characters has been proposed previously
[Rijpkema and Girard 1991; Kallmann 2004]. The smart object
approach stores manipulation information, such as grasping an-
imation or approaching direction, as part of the object descrip-
tion. The interaction information is also useful for behavior mod-
eling. Lamarche and Donikian [Lamarche and Donikian 2001] in-
troduced a behavior representation that considers the involved body
parts using concurrent state machines. As a result, the character can
mix different behaviors without the need of creating specific behav-
iors exhaustively. The manipulation graph in our work is inspired
by this similar idea. However, our object representation does not
contain any keyframes or animation sequences because the output
motion is entirely physically simulated. The object representation,
instead, stores the information of manipulation strategies and their
transitions.

Our work also builds upon operational space control in
robotics [Khatib 1987; Nakamura et al. 1987; Khatib et al. 2004;
Sentis and Khatib 2005; Mistry and Righetti 2011]. Operational
space control exploits kinematic and motor redundancy to achieve
prioritized task goals. These works demonstrated that humanoid
robots could accurately track lower priority movement postures
without interfering with the higher priority manipulation tasks.
In computer animation, Abe and Popović [2006] extended this
framework to handle closed-loop joint structures. de Lasa et al.
[de Lasa and Hertzmann 2009; de Lasa et al. 2010] introduced an
optimization scheme for task-space control, in which a nested se-
quence of objectives are optimized so as not to conflict with higher-
priority objectives. The problem addressed in this paper also de-
pends on prioritizing multiple tasks, but we introduce two new ideas
to handle concurrent manipulation tasks. By analyzing the subspace
of task-equivalent control forces, we define a metric to measure the
consistency of multiple tasks and schedule the tasks accordingly.
Moreover, we actively optimize the character’s next state so that
the character is not only aiming to achieve the current tasks, but
also adjusting its pose in preparation for future tasks.

Generating continuous locomotion is one of the most impor-
tant applications in computer animation. Various kinematic tech-
niques have been proposed and applied to gaming or virtual
world applications [Bruderlin and Williams 1995; Rose et al. 1998;
Kovar et al. 2002; Choi et al. 2003; Lau and Kuffner 2005]. To
generate a long, continuous motion sequence from short motion
clips, an effective motion blending technique must be able to han-
dle walk cycles with different gait speeds, turning directions, stride
lengths, and contact phases. We apply a similar idea as described by
Kovar et al. [Kovar et al. 2002] to interpolate similar motion clips
while maintaining the correct contact states.

3 Overview

We introduce a physics-based method, which utilizes different ma-
nipulation strategies, to synthesize concurrent object manipulation.
The input to our algorithm includes an environment map along
with the information about the objects and features in the environ-
ment, and manipulation graphs that describe all possible strategies
to hold, move, push, or release an object (Figure 2). The output of
the algorithm is a continuous animation of the character manipulat-
ing multiple objects and environment features (e.g. doors or light
switches) concurrently at various locations in a constrained envi-
ronment.

The problem involves two stages: planning and execution (Figure
3). Given the user-specified input, the planning process produces
a spatial path for locomotion and manipulation plans for all the

S
3

E
3

S
2

S
1

S
4

E
4

F
1

F
2

LH RH

GR

BH

Object3 & Object4

LH RH

GR

RSLS

Object2

LTRT

LH RH

GR

Object1

F
3

E
1

E
2

Figure 2: The input to our algorithm. Left: An environment map
is a 2D illustration of a virtual environment. The user can specify
an initial configuration (Si) and a goal configuration (Ei) for each
object i, as well as manipulatable features (Fi), such as doors or
light switches. In this example, the user specified an environment
map with nested spaces and three features, along with the tasks of
transporting four objects. Right: A manipulation graph describes
all possible strategies to manipulate an object. Here we show the
manipulation graphs for four objects. A node in the graph repre-
sents one of the allowed manipulation strategies for this object. If
two manipulation strategies can be executed in succession, we add
an edge between their corresponding nodes. All nodes can tran-
sition to themselves but the edges are ignored for clarity. In this
example, Object 1 is a book which can be picked up with either
hand (LH/RH) from the ground (GR), and tucked under the left or
right arm (LT/RT).

Event
Planner

Manipulation
Planner

Forward
Simulator

Locomotion &

Finger Motion

Synthesizer

manipulation
plans

root
path

+
qo

event
sequence

qqr +

quu

input

qr

Multitask
Controller

Figure 3: Algorithm overview. The problem involves two stages:
planning (shown in blue) and execution (shown in green).

objects and features in the scene. A manipulation plan indicates
which manipulation strategies should be used according to the ma-
nipulation graph of each object (Figure 5). During each execution
step, the multitask controller determines a set of concurrent tasks
and computes control forces τu such that the concurrent tasks have
minimal interference with each other. Finally, the forward simu-
lator uses the control forces to simulate the next upper body pose
qu while the root motion qr, lower body and finger motion qo are
produced by a kinematic-based motion synthesizer.

4 Planning

The entry point of the algorithm is a two-step planning process,
which consists of an event planner and a manipulation planner. Be-
fore we describe the planning algorithms, we first define a few ter-
minologies in detail.

4.1 Definitions

An environment map is a 2D illustration of a virtual environment
including walls, furniture, and manipulatable features (F), such as
door knobs or light switches (Figure 2, Left). Each manipulatable
feature Fi comes with a set of allowable manipulation strategies.
For example, a door knob can only be manipulated using the left

E
2

E
1S

1

S
4

F
1

E
4

E
3

S
2

S
3

(b)(a)

LH LT RS RH RH LT RS GR

F
2

F
3

Figure 4: (a) Partial aggregate manipulation graph constructed
from the four manipulation graphs described in Figure 2. (b) The
event graph for the scenario in Figure 2.

or right hand. On the environment map, the user can specify initial
configuration (Si) and goal configuration (Ei) for each object i to
indicate the location and approaching orientation for pick-up and
release of the object. We define an event as one of three actions: the
pick-up of an object Si, the release of an object Ei, or the interaction
with a feature Fi, such as turning a light switch on or off.

In addition, a manipulation graph for each object needs to be spec-
ified by the user. A node in the graph represents one of the allowed
manipulation strategies for this object. We define nine different
types of strategies in this paper: LH/RH/BH (use left/right/both
hands to grasp the object), LS/RS (use left/right shoulders to carry
the object), LT/RT (tuck the object between torso and left/right
arm), and LE/RE (use left/right elbow to push the object). We also
define a special node, GR, to indicate the ”ground state” when the
object is not manipulated by the character. If two manipulation
strategies can be executed in succession, we add an edge between
their corresponding nodes. For example, a book can be picked up
by the left hand and tucked under the right arm. In this case, we
add an edge between LH and RT (Figure 2, Right).

An aggregate manipulation graph combines all the input manipu-
lation graphs into one (Figure 4(a)). Given n manipulation graphs,
we construct each node of the aggregate graph by taking an n-tuple
consisting of one node from each manipulation graph. Initially,
the aggregate graph nodes consist of all possible n-tuples of object
configurations. We prune nodes with configurations that cannot be
achieved due to the mutual exclusivity of the manipulation strate-
gies. For example, an aggregate node containing LH (left hand) and
BH (both hands) is invalid if the character is not allowed to manip-
ulate one object using the left hand and the other using both hands
1. Once we define a valid set of aggregate nodes, we determine
the connection of each pair of nodes based on the connectivity of
the original manipulation graphs. Consider two aggregate nodes s1

and s2, where s[i] denotes the manipulation strategy for object i in
node s. We add an edge between s1 and s2 if and only if, for every
object i, there exists an edge between s1[i] and s2[i] in its original
manipulation graph.

4.2 Event Planner

The goal of event planner is to search for a valid event sequence
which achieves all the required tasks on the environment map based
on user-specified object configurations and initial feature states
(e.g. a light switch is on or off). Our algorithm casts the search
problem as a graph traversal. The first step is to construct a event
graph, of which each node corresponds to an event (Si, Ei, or Fi) on
the environment map. If there is a collision-free path between two
nodes on the environment map, we add an edge between them and
assign the Euclidean distance as the cost of the edge. For example,

1In this paper, every manipulation strategy is mutually excluded with

itself. In addition, BH is mutually excluded with LH and RH.

Event Sequence: S1 S3 F2 E3 S4 S2 F3 E4 F1 E2 E1

Manipulation Plans:

S3 S4 S2 E4 F1

Obj1 RH RH LT LT RH

Obj2 RH RS RS RS RS

Obj3 LH LH LH LH

RH RH LT LT RH RH RH

Obj4 LH LH LH LH

Fea1 LH

Fea2 RH

RHFea3

F3

LH

LT LT

RS

LH

F2 E3S1

S3 S4 S2 E4 F1

Obj1

Obj2

Obj3 LH/RH

Obj4

Fea1

Fea2

Fea3

F3S1

Event Constraints:

LH/RH

LH/RH

LH/RH

LH/RH

LH/RH

LH/RH

F2 E3

E2 E1

RH

LH LH

E2 E1

LH/RH

LH/RH

LH/RH

LH/RH

LH

Figure 5: The optimal event sequence, the event constraints and the
derived manipulation plans for the scenario in Figure 2. Each row
of the manipulation plans corresponds to an object and indicates
the manipulation strategies planned for achieving the optimal event
sequence.

Figure 4(b) shows that (S1) and (S2) cannot be connected directly
because there is a wall between them.

Before we can traverse the event graph, we need to identify two
types of constraints. Precedence constraints enforce that all Si

nodes appear prior to their corresponding Ei nodes in the event se-
quence, because an object cannot be released before it is picked
up. Capacity constraints make sure that currently “active” objects
only employ manipulation strategies affordable by the character.
We consider object i active if Si is in the current path but Ei is not.
To satisfy capacity constraints, the set of manipulation strategies
employed by currently active objects must match one of the nodes
in the aggregate manipulation graph.

We can now apply a standard depth-first-search (DFS) on the event
graph to find a shortest path that visits every S node and E node
exactly once, subject to precedence and capacity constraints. The
output path is the optimal event sequence, P = {p1, · · · , pn} that
achieves the required manipulation tasks. Based on a feature’s state
and description, we can remove its corresponding event from P if
it does not require manipulation. For example, if a light switch is
already on, (e.g. F3 in Figure 2, Left) when the character enters the
room, this feature event can be removed from the event sequence.

Since we know the location of each event in P, we can compute
a spatial path for the root trajectory that visits every event in a se-
quence using P as a guide. In addition to reaching the event loca-
tions, the path must approach each event at the desired angle and
avoid obstacles in the environment. Our algorithm first converts the
given environment map to a distance map based on the locations
of obstacles (e.g. walls and furniture). We then connect each pair
of consecutive event locations with a Hermite curve, such that in-
coming tangents meet the desired approaching angles. If the curve
intersects with an obstacle on the distance map, we move the point
of deepest penetration to a collision-free location and subdivide the
curve at that point. This step is repeated recursively until the curve
is collision-free.

4.3 Manipulation Planner

From the optimal event sequence, we can derive manipulation plans
(Figure 5) by searching for a valid path, Q = {q1, · · · ,qn}, on the
aggregate manipulation graph, where qi represents the manipula-
tion strategy associated with event pi. Each event in the event se-
quence imposes certain constraints on the search problem. For ex-
ample, if the event corresponds to pick-up or release of an object
(pi = S j or pi = E j), the manipulation strategy is constrained to
left or right hand (qi[j] =LH or RH). If the event corresponds to a
feature (pi = Fj), the manipulation strategy must match one of the
strategies allowed by that feature. The top table in Figure 5 shows
the event constraints for each object-event pair. The goal of the
search algorithm is to fill in the manipulation strategies between Si

and Ei for each row Oi.

We apply DFS on the aggregate manipulation graph to find a valid
path Q, subject to the event constraints. However, the manipulation
plans resulting from Q can be unrealistic because they might con-
tain too many “ground states” between the pick-up and release of
an object, or transition between different strategies too frequently.
As a result, the character’s behavior may appear unnatural and un-
intelligent. To solve these issues, we prioritize the edges at each
node during DFS, such that the adjacent nodes with no ground state
and with the same manipulation strategies as the current node will
be selected first. In addition, we allow the character more flexibility
to rearrange the active objects before executing each event. For ex-
ample, the character can tuck the book under its arm before opening
the door. To achieve this relaxation, we allow the solution path to
take an extra node before each qi, i.e. adding another column be-
fore each S or E event and resulting a path Q = {q′1,q1, · · · ,q

′
n,qn}.

Once a valid Q is found, we remove redundant nodes q′i if q′i = qi.

4.4 From events to tasks

Before we can execute the actions specified by the manipulation
plan, we need to translate the events in the manipulation plan to a
set of concrete motor tasks. For example, a transition from LH to
LS (Figure 2, Object 2) requires a task to transport the object from
the left hand to the left shoulder, followed by another task to move
the left hand back to a neutral position. For the examples shown in
this paper, four different tasks are defined: a tracking task, a holding
task, a transporting task, and an attention task. We describe these
tasks in further detail in Section 5.2.

The tasks associated with each event transition can be stored at the
edge of a manipulation graph. We group the edges into three cate-
gories:

• L/RH → ∗: A transition, from a hand to any manipulation
strategy, associated with a transporting task followed by a
tracking task.

• ∗ → L/RH: A transition, from any manipulation strategy to a
hand, associated with a tracking task followed by a transport-
ing task.

• q → q: A self transition associated with a holding task.

We can now map the event transitions in the manipulation plan to a
set of consecutive and concurrent motor tasks. In the next section,
we will introduce an algorithm to execute these tasks efficiently.

5 Execution

The manipulation plans and the root path provide guidance for ex-
ecuting the character’s motion. Our algorithm uses a forward sim-
ulator to physically simulate upper-body motion, while the root,

τ*=τ
1

*+τ
2

*

τ
1

*

τ
2

*

τ*

Figure 6: Left: Computation of optimal torque τ∗. Assuming there
are two active tasks shown in red and blue, the dashed line indicates
the torques that satisfy the task and the dashed circle indicates the
torque bounds for the task. The optimal torque for the “red” task,
shown as the red arrow, must lie on the red dashed line within the
red circle, and be as parallel as possible to the blue dashed line.
Similarly, the blue arrow indicates the torque that achieves the
“blue” task while having the least interference with the red task.
The final torque is the sum of these two individual torques shown
as the purple arrow. Right: The optimal next pose. Changing the
pose for the next time step effectively changes the future task spaces.
Consider the two active tasks (red and blue dashed line) and a cur-
rently inactive task shown as a green dashed line. The optimal next
pose will create new task spaces (solid lines) such that their inter-
section is closer to the current optimal torque (purple arrow).

lower-body, and finger motions are generated by kinematic proce-
dures.

Our main focus in this section is the simulation of upper-body mul-
titasking. Because the character might not be able to execute all
the tasks concurrently, we need an efficient task scheduler and an
effective control algorithm for multitasking.

5.1 Multitask Controller

We first review the formulation of task-space dynamics and control.
Let q ∈ Rn be the independent degrees of freedom (DOFs) in the
upper body of the character. The equations of motion in generalized
coordinates can be expressed as follows:

τ = M(q)q̈+C(q, q̇)−JT
p F (1)

where M denotes the mass matrix, C includes Coriolis, centrifu-
gal, and gravitational forces, Jp is the Jacobian matrix that projects
external force F applied at a body point p from Cartesian to gener-
alized coordinates, and τ represents the generalized control forces
applied internally by the character. If a task is to control the accel-
eration of a Cartesian point x on the character, it is more convenient
to express the equations of motion also in the Cartesian space as
follows:

JM−1τ = ẍ+JM−1C(q, q̇)− J̇q̇−JM−1JT
p F (2)

Note that J is the Jacobian matrix evaluated at the point x and is
in general different from Jp. Equation 2 represents a simple lin-
ear relation between the commanding force ẍ for the task and the
required joint torques τ .

Aτ +b = ẍ (3)

where A = JM−1 and b =−AC(q, q̇)+ J̇q̇+AJT
p F.

Task scheduling. Using the linear relationship in Equation 3, we
can define a task-inconsistency metric to measure the interference
among multiple tasks. Let P ∈ Rn×m (n > m) be the matrix whose
range is the nullspace of A. The torques that satisfy Equation 3 can

be expressed as τ = τ ′ +Pz, where τ ′ is a particular solution of
Equation 3 and z is an arbitrary vector in Rm. Given two tasks Ti

and Tj, a torque that satisfies Ti is considered consistent with Tj if it
is in the range of P j. Therefore, we can define the most “multitask-

able” torque for Ti as τ∗i = τ ′i +Piz
∗
i , where z∗i is the minimizer of

the following convex optimization.

z∗i = argmin
zi

g(zi;P j) = ‖P j(τ
′
i +Pizi)− (τ ′i +Pizi)‖

2

subject to ‖τ ′i +Pizi‖2 ≤ di (4)

P j = P j(P
T
j P j)

−1PT
j denotes the projection matrix onto P j, and di

defines the torque bounds for Ti. It is critical to enforce bounds
on the resulting torque so that the character does not use excessive
torque to multitask. The residual of the optimization ri = g(z∗i ;P j)
measures how inconsistent Ti is with respect to Tj (Figure 6, Left).

When the character is dealing with a larger set of tasks, we simply
replace g(zi;P j) in Equation 4 with g(zi;

⋂
j R(P j)), where R(P)

denotes the range of P and
⋂

j R(P j) is the intersection of ranges of
all tasks in the set except for task i. The residual of this optimiza-
tion, ri = g(z∗), indicates the inconsistency between Ti and the rest
of the tasks. At each time step, the multitask controller computes
the inconsistency metric ri for every candidate task according to
the manipulation plan. If the sum, r̄ = ∑i ri, is greater than a certain
threshold, tasks are removed one by one until r̄ is below the thresh-
old. The order used to remove tasks is predefined based on task
types: 1. Attention, 2. Tracking, 3. Transporting, 4. Holding. The

remaining tasks constitute the active task set A(t) for the current
time step. The final optimal torque is computed as τ∗ = ∑i∈A(t) τ∗i .

Optimal next pose. The algorithm described so far computes the
optimal torque at each time step to best achieve currently activated

tasks (A(t)), but it does not have any effect on the task space in the
future. A more efficient way of multitasking requires the charac-
ter to not only achieve the currently active tasks, but to anticipate
other inactive candidate tasks. Because the task space parameters
depend on the character’s pose, i.e. both A and b are functions of
q, we can search for an ideal next pose which defines a task space
more consistent with currently inactivate candidate tasks. In addi-
tion, the task space at the next time step should be similar to the
current one so that the optimal torque computed by Equation 4 can
be continuous over time.

To this end, our algorithm optimizes the pose q(t+1) at the next time
step such that the intersection of all the candidate task spaces, which

depends on q(t+1), is brought closer to the currently optimal torque
τ∗ (Figure 6, Right). We use a similar formulation as described in
Section 5.1; the torques that achieve a task at the next time step

must satisfy Equation 3, with A and b evaluated at q(t+1). If there
are multiple tasks at the next time step, we simply stack all the linear
equations to obtain aggregate A and b. The general solution for a
torque that achieves all the tasks at next time step can be expressed

as τ(q(t+1)) = τ ′(q(t+1)) + P(q(t+1))z. Our algorithm optimizes

the task space by finding a q(t+1) such that the future intersection
of task spaces is closer to the current optimal torque τ∗.

argmin
q(t+1), z

‖(τ ′(q(t+1))+P(q(t+1))z)− τ∗‖2 (5)

Because the optimal value for z can be expressed analytically as
z∗ = (PT P)−1PT (τ∗− τ ′), Equation 5 can be rewritten as

argmin
q(t+1)

‖(P(PT P)−1PT − I)(τ∗− τ ′)‖2 (6)

where optimization variables q(t+1) are suppressed for clarity.

Once the optimal next pose, q∗(t+1), is computed, we still need to
incorporate it into the current time step. We do so by exploiting
redundancy in control space, as described in the next paragraph.

Prioritized task force. The final control force τ̄ is the sum of
multiple prioritized commanding forces. Using the operational
space control framework ([Khatib et al. 2004]), we resolve poten-
tial interference among tasks by projecting the secondary com-
manding forces τs onto the nullspace of the primary task space:
τ̄ = τp +Pτs, where τp is the primary commanding force. In our
formulation, the optimal torque τ∗ required to achieve currently ac-
tive tasks is the primary commanding force. Tracking the optimal

next pose q∗(t+1) is not essential for the current tasks, but it will

make it easier to multitask in the future. Therefore, we track q∗(t+1)

as a secondary task so that it does not interfere with τ∗. In addition,
we add a damping term for all the joints and make the damping
force as a secondary task as well. The final commanding force can
be written as

τ̄ = τ∗+P(kp(q
∗(t+1)−q)− kvq̇) (7)

Additional forces. In addition to control forces, we also apply
a gravity compensation force and a fictitious force to account for
the effect of the lower body acceleration. We first compute the
root acceleration, ar, by applying finite difference on the root posi-
tions generated by the locomotion synthesizer. The fictitious force,
−miar, is then added to each body node in the upper body, where mi

is the mass of body node i. Our simulation also considers the joint
limits of the character. We compute the constraint force to enforce
joint limits as a linear complementary problem.

5.2 Types of Tasks

This subsection provides the implementation details for the tasks
we used to generate the examples in this paper. Using the following
formulation, we can compute a particular solution τ ′ by solving
Equation 3.

Tracking task: A task that moves a Cartesian point on the charac-
ter toward a desired location x̄ in the world with desired speed v̄.
We use a proportional-derivative (PD) controller to determine the
commanding force: ẍ = kp(x̄−x)+ kv(v̄− ẋ). A tracking task can
also track the desired joint angle and joint velocity. In that case, the
commanding force ẍ represents the desired joint acceleration and J
becomes an identity matrix.

Holding task: A task that maintains the current location of a Carte-
sian point x on the character against an external force Fx applied
at x. For example, if an object with mass m is held at x, we set
b=−AC(q, q̇)+ J̇q̇+AJT mg. In addition, we set the commanding
force to: ẍ = −kvẋ to avoid non-zero velocity at x. A holding task
can also maintain the current orientation of a body point x against an
external force. Controlling the orientation can be done via a com-
manding torque ω̇ =−kvω , where ω is the angular velocity of the
body node x resides. Equation 3 can be modified to: Aτ +b = ω̇ ,
where A= Jω M−1 and b=−AC(q, q̇)+ J̇ω q̇+AJT mg. The Jaco-

bian Jω ∈ R3×n relates the angular velocity of the Cartesian vector
to joint velocity: ω = Jω q̇.

Transporting task: A task that combines the effort of holding and
tracking to move an object to a desired location. We set ẍ = kp(x̄−

x)− kvẋ and b =−AC(q, q̇)+ J̇q̇+AJT mg. For both tracking and
transporting tasks, we can gradually move the target point from the
initial position to x̄ along a straight line with a bell-shape velocity
profile to generate more natural human reaching motion.

Figure 7: Simulated motion in the coffee shop example.

Attention task: A task that controls the look-at direction of the
character by setting the commanding torque as ω̇ = kpθ(v×u)−
kvω , where v is the current look-at direction, u is the target look-at
direction, and θ is the angle between u and v. The attention task is
initiated when the character starts to approach an object or an envi-
ronment feature using one of the manipulation strategies. We define
an attention zone as a sphere centered at the object of interest. A
valid look-at direction is then defined as a vector from the location
of the eyes to any point in the attention zone. Because real humans
tend to look at the object carefully only at the beginning part of the
reaching motion, we increase the radius of the attention zone as the
character’s manipulator gets closer to the object or the feature. This
treatment introduces more overlap between attention zones of dif-
ferent tasks and allows the characters to manipulate multiple objects
concurrently.

5.3 Locomotion and Finger Motion Synthesizer

We adopt existing work on motion blending and motion graphs to
generate locomotion. A small set of mocap sequences containing
a straight walk, single steps, and turning motions is used to create
continuous walking sequences. We use the same method described
by Kovar et al. [2002] to detect transition points in the dataset.
Given the spatial path produced by the event planner, a sequence
of walking cycles is selected and blended to follow the path. Addi-
tionally the locomotion synthesizer may refine its motion based on
the proximity of active tasks. For example, if two events are very
close to each other (e.g. E3 and S4 in Figure 2), the synthesizer may
deviate from the original path and produce a small step toward the
second one instead of a full walking and turning sequence.

The hand grasping motion is kinematically generated via a few
keyframes and interpolation. When the hand is sufficiently close
to grab the object, we stop simulating the object and rigidly attach
the object to the hand. When the character releases the object, we
resume the physical simulation on the object.

6 Results

We construct an articulated human character with 16 DOFs on the
upper body and 18 DOFs on the lower body. The upper body mo-
tion is simulated using a rigid multibody simulator, DART [DAR].
We use a general optimization software, SNOPT [Gill et al. 1996],
to solve for quadratic programs (Equation 4) and nonlinear pro-
grams (Equation 6). We create two examples to showcase the abil-
ity of the character to multitask in different scenarios: a baseline
living room scenario and its variations, as well as a scenario in a
coffee shop. The path planning and manipulation planning for the
baseline living room example take 1.62 and 0.04 seconds respec-
tively. On average, the simulation runs 3.5 times slower than real-
time.

6.1 Living Room Example

Baseline scenario. Our baseline scenario is constructed from the
example shown in Figure 2. According to the manipulation plans,
the character picks up a book (S1) with the right hand and a mug
(S3) with the left hand, and walks toward the bedroom while tucking
the book under the left arm before opening the door with the right
hand (F2). The character then moves the book back to the right
hand before placing the mug on the table (E3), grabs a crumpled
paper using the left hand (S4), tucks the book back under the left
arm to allow the right hand to pick up a bookbag (S2), puts the
bookbag on the right shoulder and uses the right hand to turn off
the light (F3). After walking toward the corner of the living room
while moving the book back to the right hand, the character drops
the paper from the left hand (E4) and walks toward the front door.
Finally, the character turns off the switch using the left hand (F1).
This complex plan is computed automatically by our manipulation
planner.

Please view the resultant motion in the accompanying video. For
this example, we modify the tracking task slightly for two occa-
sions, reaching the torso and reaching the shoulder, to improve the
aesthetics of the motion. Instead of setting a target position to x̄, we
predefine a target trajectory such that the motion of the arm moves
more naturally. Because both endpoints of the trajectory are de-
termined in the character’s local coordinates for these two special
cases, we do not need to modify the trajectory for different objects
or locations of the character.

Changing the environment map. We can modify any property
on the environment map, delete or add objects, or change the ma-
nipulation graph for each object. Our algorithm then automatically
produces a new manipulation plan for the multitask controller. In
the example shown in Figure 2, we change the start configuration of
the crumpled paper (S4) and the end configuration of the mug (E3).
These two modifications drastically change the event sequence and
manipulation plans. Please see the accompanying video for the re-
sultant motion.

6.2 Coffee Shop Example

In the second scenario, the character drops by a coffee shop to buy
lunch. The manipulated objects include a cup of coffee and a lunch
box, both of which have the same manipulation graph as Object 3
and Object 4 in Figure 2. In addition, we introduce two different
types of doors in this scenario: a door that can be pushed open with
an elbow and a car door that can only be opened by a hand (Figure
7).

After taking the coffee in his right hand, the character picks up
a lunch box from the refrigerator using his left hand. When the
character walks toward the door, our planning algorithm prefers to
use his left elbow to push the door open instead of letting him put
one of the items on the ground. Finally, when the character reaches
his car outside, he cannot open the car door using any manipulation
strategies except for LH or RH, which are both occupied by other
objects. The only option left is to temporarily leaves one of the
items on the closest surface (i.e. choosing GR strategy). In our
example, the character chooses to put the coffee cup on the roof of
the car.

6.3 Evaluations

Changing object properties. One advantage of using physics
simulation to generate manipulation motion is that the character can
react differently to objects with different physical properties. To

Figure 8: Comparison between objects with different mass.

Figure 9: Comparison between a simple pose tracking approach
and our method.

demonstrate the effect of dynamics, we modify the physical prop-
erties of the object and compare the changes in the motion. In one
example, as shown in Figure 8, the character tries to put the book-
bag on the shoulder while holding a mug with the other hand. We
show that the character leans further to the side when picking up a
heavier bookbag due to dynamics, but still manages to maintain the
upright orientation of the mug. In reality, it takes less effort to pick
up a heavy object if we lean away from the object. To simulate this
effect, our optimization will need to have an additional term that
minimizes joint torque usage.

Comparison with a pose tracking approach. One simple
method for generating multitasking motion is to apply inverse kine-
matics (IK) to solve for a target pose that satisfies multiple Carte-
sian constraints, and use a proportional-derivative (PD) control
scheme to track the target pose. This method may work in some
situations, but it has a few drawbacks compared to our method.
First, the trajectory required to achieve the target pose highly de-
pends on unintuitive parameters of the PD trackers, whereas the
motion trajectory generated by our method depends on multitask
consistency. Second, tracking a target pose alone does not take in-
active candidate tasks into account. Our method, on the other hand,
continuously adjusts the character’s poses in anticipation of future
tasks. Third, it is hard to produce a natural target pose using stan-
dard IK without exploiting many example poses, while our method
does not require any upper body poses. We demonstrate the differ-
ence between our method and a pose tracking approach in an exam-
ple shown in Figure 9 where the character tries to reach two objects
in sequence. The motion generated by pose tracking is clearly less
natural than our result as shown in the video. Motion capture data
could be used as guidance for tasks involving tracking. However,
it is difficult to acquire appropriate mocap data in advance for all
manipulation tasks and their combinations.

Optimal next pose. We demonstrate the effect of an optimal next
pose using two challenging scenarios involving a few inconsistent
tasks. In the first example as shown in the top row of Figure 10, the
character tries to reach an object on a lower surface using the right
hand while keeping the bookbag strap from sliding down the right
shoulder. At the same time, the character must maintain the orien-

Figure 10: Top row: Comparison between the results with an opti-
mal next pose (right) and without (left). Bottom row: Comparison
between the use of a unified large torque bound for all tasks (left)
and a proper torque bound for each individual task.

tation of the mug in the left hand. Without the optimal next pose,
the character can satisfy the tasks to maintain the orientation of the
right shoulder and the left hand, but it fails to reach the object. On
the other hand, with the optimal next pose, the character continu-
ously adjusts its pose to lean toward the right side and eventually
reaches the object. In the second example, the character tries to
maintain the orientation of the mug in the left hand while tucking a
book under the left arm using the right hand. Due to high inconsis-
tency between these tasks, the orientation task eventually becomes
inactive. Without the optimal next pose, the character completely
ignored the orientation of the mug, resulting even greater inconsis-
tency between these tasks.

Effect of task-specific torque bounds. As an alternative to our
formulation for task scheduling, we can directly compute a torque
vector which is the closest in Euclidean distance to the intersection
of all active tasks (in Figure 6, the purple arrow would point at the
intersection of the red and the blue lines). The drawback of this
method is that we can only set a single torque bound for the aggre-
gate torque that combines all the active tasks (i.e. the bound on the
magnitude of the purple vector in Figure 6). In contrast, our method
provides flexibility to define different torque bounds for different
tasks, resulting in much more natural motion for multitasking. We
test the alternative method on the two examples used for testing the
optimal next pose. In both examples, we find that it is difficult to de-
termine a single torque bound for all active tasks. When the torque
bound is too high, the character uses excessive torques to multitask,
quickly leading to simulation blowup as shown in the bottom row
of Figure 10. When the torque bound is too low, the character fails
to achieve certain tasks that require a larger amount of torque. We
define the torque bounds approximately based on the mass of the
subtree rooted at each joint.

6.4 Limitations

Our current algorithm has a few limitations. First, we assume that
the manipulation tasks are primarily done by the upper body and lo-
comotion is done by the lower body. For simple pick-up and place-
ment tasks that do not require much physical strength, this assump-
tion can generate reasonable results. However, for more general
whole-body manipulation tasks, such as pushing a heavy door or

lifting a heavy object, coordination between locomotion and upper
body manipulation is vital.

Our path planner implementation is very primitive and unable to
handle extremely cluttered environments. Furthermore, we do not
have a path planner at the level of upper body manipulation. When
manipulating in a tight space, such as fetching an item in a packed
refrigerator, the character’s upper body is likely to collide with
the environment or fail to move completely. To circumvent this
issue, we plan to investigate a few broadly applied randomized
algorithms proposed in previous work [Lavalle and Kuffner 2000;
Kavraki et al. 1996].

Our algorithm only considers the shortest distance when planning
the events. This is noticeable when we change the input of the base-
line example, as the character carries both the mug and the book in
and out of the smaller room before exiting, instead of picking them
up on the way out. Other additional criteria, such as the amount of
effort required for each task, could be taken into account during the
DFS.

The walking motion in our examples can be largely improved if we
use a larger mocap database and beter motion editing algorithms.
Our motion graph currently only contains 13 short clips.

7 Conclusion

We introduce a physics-based technique to synthesize human activ-
ities involving concurrent full-body manipulation of multiple ob-
jects. To capture how humans deftly exploit different properties
of body parts and objects for multitasking, we need to solve chal-
lenging planning and execution problems. Given an environment
map along with the information about the objects and features in
the environment, and manipulation graphs that describe all possi-
ble strategies to hold, move, push, or release an object, our algo-
rithm generates a continuous animation of the character manipulat-
ing multiple objects and environment features concurrently at vari-
ous locations in a constrained environment.

One interesting future direction is to integrate our manipulation
controller with fully simulated biped locomotion. Physically sim-
ulating whole-body manipulation can raise new challenges in bal-
ance control. We are particularly interested in integrating our up-
per body controller with the biped walking controller developed by
Coros et al. [Coros et al. 2010]. Their work has demonstrated a
variety of walking related skills, such as picking up and carrying
objects. In addition, we are interested in investigating robot control
strategies for whole-body manipulation, such as lean-and-push or
lift-and-push, to handle heavy and large objects.

The final piece to complete a fully simulated virtual character is
dextrous manipulation. Many realistic multitask behaviors can be
enabled by better prehension control algorithms. For example, the
character can hook-grasp multiple coffee mugs and open a cabi-
net door all with one hand. Furthermore, a large repertoire of ob-
ject manipulation tasks require precise collaboration between two
hands. Developing coordinated bimanual controllers can be another
exciting future research direction.

References

ABE, Y., AND POPOVIĆ, J. 2006. Interactive animation of dy-
namic manipulation. In Eurographics/SIGGRAPH Symposium
on Computer Animation.

BRUDERLIN, A., AND WILLIAMS, L. 1995. Motion signal pro-
cessing. In SIGGRAPH, 97–104.

CHOI, M. G., LEE, J., AND SHIN, S. Y. 2003. Planning biped lo-
comotion using motion capture data and probabilistic roadmaps.
ACM Trans. Graph. 22 (April), 182–203.

COROS, S., BEAUDOIN, P., AND VAN DE PANNE, M. 2010. Gen-
eralized biped walking control. ACM Trans. Graph. 29 (July),
130:1–130:9.

DART: Dynamic Animation and Robotics Toolkit,
http://dart.golems.org/.

DE LASA, M., AND HERTZMANN, A. 2009. Prioritized optimiza-
tion for task-space control. In IEEE/RSJ international confer-
ence on Intelligent robots and systems, IROS’09, 5755–5762.

DE LASA, M., MORDATCH, I., AND HERTZMANN, A. 2010.
Feature-based locomotion controllers. ACM Trans. Graph. 29.

FENG, A. W., XU, Y., AND SHAPIRO, A. 2012. An example-
based motion synthesis technique for locomotion and object ma-
nipulation. In ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games.

GILL, P., SAUNDERS, M., AND MURRAY, W. 1996. Snopt: An
sqp algorithm for large-scale constrained optimization. Tech.
Rep. NA 96-2, University of California, San Diego.

HARADA, K., KAJITA, S., KANEKO, K., AND HIRUKAWA, H.
2003. Pushing manipulation by humanoid considering two-kinds
of zmps. In IEEE International Conference on Robotics and
Automation, vol. 2, 1627–1632.

HUANG, Y., MAHMUDI, M., AND KALLMANN, M. 2011. Plan-
ning humanlike actions in blending spaces. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).

KALLMANN, M., AUBEL, A., ABACI, T., AND THALMANN, D.
2003. Planning collision-free reaching motions for interactive
object manipulation and grasping. Computer graphics Forum
22, 3 (Sept), 313–322.

KALLMANN, M. 2004. Interaction with 3-d objects. In Handbook
of Virtual Humans. 303–322.

KALLMANN, M. 2005. Scalable solutions for interactive virtual
humans that can manipulate objects. In Proceedings of the Arti-
ficial Intelligence and Interactive Digital Entertainment, 69–74.

KAVRAKI, L., SVESTKA, P., LATOMBE, J.-C., AND OVERMARS,
M. H. 1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Trans. on Robotics and
Automation 12, 4, 566–580.

KHATIB, O., SENTIS, L., PARK, J., AND WARREN, J. 2004.
Whole-body dynamic behavior and control of human-like robots.
International Journal of Humanoid Robotics 1, 1, 29–43.

KHATIB, O. 1987. A unified approach for motion and force control
of robot manipulators: The operational space formulation. IEEE
Journal of Robotics and Automation 3, 1 (february), 43 –53.

KOGA, Y., KONDO, K., KUFFNER, J., AND LATOMBE, J.-C.
1994. Planning motions with intentions. In SIGGRAPH, 395–
408.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. In SIGGRAPH, 473–482.

LAMARCHE, F., AND DONIKIAN, S. 2001. The orchestration of
behaviours using resources and priority levels. In Eurographic
workshop on Computer animation and simulation, 171–182.

LAU, M., AND KUFFNER, J. J. 2005. Behavior planning for char-
acter animation. In ACM SIGGRAPH/Eurographics symposium
on Computer animation, 271–280.

LAVALLE, S. M., AND KUFFNER, J. J. 2000. Rapidly-exploring
random trees: Progress and prospects.

LIU, Y., AND BADLER, N. I. 2003. Real-time reach planning
for animated characters using hardware acceleration. In Inter-
national Conference on Computer Animation and Social Agents,
86–.

MISTRY, M., AND RIGHETTI, L. 2011. Operational space control
of constrained and underactuated systems. In Proceedings of
Robotics: Science and Systems.

NAKAMURA, Y., HANAFUSA, H., AND YOSHIKAWA, T. 1987.
Task-priority based redundancy control of robot manipulators.
Int. J. Rob. Res. 6 (July), 3–15.

NISHIWAKI, K., YOON, W.-K., AND KAGAMI, S. 2006. Motion
control system that realizes physical interaction between robot’s
hands and environment during walk. In International Conference
on Humanoid Robots, 542–547.

RIJPKEMA, H., AND GIRARD, M. 1991. Computer animation of
knowledge-based human grasping. SIGGRAPH Comput. Graph.
25 (July), 339–348.

ROSE, C., COHEN, M. F., AND BODENHEIMER, B. 1998. Verbs
and adverbs: Multidimensional motion interpolation. IEEE
Computer Graphics and Applications 18, 5 (Sept.).

SENTIS, L., AND KHATIB, O. 2005. Control of free-floating hu-
manoid robots through task prioritization. In IEEE International
Conference on Robotics and Automation.

SHAPIRO, A., KALLMANN, M., AND FALOUTSOS, P. 2007. Inter-
active motion correction and object manipulation. In Symposium
on Interactive 3D graphics and games, ACM, 137–144.

STILMAN, M., SCHAMBUREK, J.-U., KUFFNER, J., AND AS-
FOUR, T. 2007. Manipulation planning among movable ob-
stacles. In IEEE International Conference on Robotics and Au-
tomation.

TAKUBO, T., INOUE, K., AND ARAI, T. 2005. Pushing an ob-
ject considering the hand reflect forces by humanoid robot in dy-
namic walking. In IEEE International Conference on Robotics
and Automation, 1706 – 1711.

YAMANE, K., KUFFNER, J. J., AND HODGINS, J. K. 2004. Syn-
thesizing animations of human manipulation tasks. ACM Trans.
Graph. 23 (Aug.), 532–539.

YOSHIDA, E., BELOUSOV, I., ESTEVES, C., AND LAUMOND, J.-
P. 2005. Humanoid motion planning for dynamic tasks. In IEEE
International Conference on Humanoid Robotics.

