
Program Synthesis as a Generative Method
Eric Butler

Paul G. Allen School of Computer
Science and Engineering
University of Washington

edbutler@cs.washington.edu

Kristin Siu
School of Interactive Computing
Georgia Institute of Technology

kasiu@gatech.edu

Alexander Zook
School of Interactive Computing
Georgia Institute of Technology

a.zook@gatech.edu

ABSTRACT
Generative methods (also known as procedural content generation)
have been used to generate a variety of static artifacts such as game
levels. One key property of a generative method for a particular
domain is how e�ectively the approach allows a designer to express
the properties and constraints they care about. Generative methods
have been applied much less frequently to dynamic artifacts such
as boss behaviors, in part because the complex representation re-
quired to describe boss morphology and behavior is not amenable
to existing generative techniques. It is challenging to describe a
generative space of varied yet valid behaviors. Expanding on previ-
ous work that introduced a programming language for representing
boss behaviors, we illustrate how such a language can be used by a
designer to describe desirable design properties and constraints for
bosses. �at is, we de�ne a generative space of bosses as a space of
well-formed programs. We present a constructive algorithm that
extends generative grammars to e�ciently generate well-formed
programs, and we show a complete example of generating Mega-
Man-like bosses with complex a�ack pa�erns. We conclude that
designing a generative space of dynamic behaviors can be fruitfully
framed as a programming-language design problem.

CCS CONCEPTS
•Applied computing →Computer games;

KEYWORDS
Program Synthesis, Generative Grammars, Generative Methods,
Procedural Content Generation
ACM Reference format:
Eric Butler, Kristin Siu, and Alexander Zook. 2017. Program Synthesis as a
Generative Method. In Proceedings of FDG’17, Hyannis, MA, USA, August
14-17, 2017, 10 pages.
DOI: 10.1145/3102071.3102076

1 INTRODUCTION
Generative methods [3] (o�en referred to as procedural content
generation [20, 23, 27]) are algorithms used to generate artifacts
of interest in some domain. Designers use generative methods

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
FDG’17, Hyannis, MA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5319-9/17/08. . .$15.00
DOI: 10.1145/3102071.3102076

Figure 1: An in-game screen capture of the Moldorm boss
from The Legend of Zelda: A Link to the Past. Generating
these types of boss encounters is challenging with current
techniques due to the complex representation of boss behav-
ior; bosses are de�ned by programs.

to produce varied artifacts in a domain of interest (e.g., kni�ing
pa�erns, Mario Bros. levels), with the generative method allowing
the designer to describe their intent for generated output. �e value
of a method for a domain is o�en characterized by an expressive
range [24]: the space of desirable artifacts a method produces while
avoiding undesirable artifacts. While factors such as the ability to
control the sampling of outputs or the e�ciency of generation are
important, a key feature is whether the designer can e�ectively and
concisely express their intent over the generative space.

Boss encounters are compelling and dynamic highlights of a
gameplay experience, serving as capstones for player skill and pro-
gression. We seek to generate boss encounters, which requires a
method to capture the complex, state-driven behaviors of bosses.
Generating bosses requires producing both the physical shape of
a boss and the accompanying behavior that de�nes the way the
boss acts and reacts to player actions. Existing generative meth-
ods have primarily been developed for producing static content:
game levels, mazes, �ora, terrain, and so on [20]. However, these
methods are not well-equipped to generate complex boss behaviors
due to representation required. In previous work we argued that a
domain-speci�c programming language (DSL) with features such
as variables references and function calls is an appropriate repre-
sentation for boss morphology and behaviors [21]. Boss structure
and properties map to state variables and boss behavior maps to
program code.

FDG’17, August 14-17, 2017, Hyannis, MA, USA Eric Butler, Kristin Siu, and Alexander Zook

�e complex behavior of bosses requires an equally-complex
representation. Consider Moldorm boss from �e Legend of Zelda:
A Link to the Past, shown in Figure 1. Moldorm runs randomly
around the screen. Each time the player damages Moldorm, the
boss speeds up. We use variable bindings to link di�erent parts
of Moldorm’s behavior to the common state tracking Moldorm’s
speed. Moldorm’s state is represented by both basic types such
as numbers and structured elements such as the physical objects
describing its shape. �e Moldorm example captures a wide array
of boss archetypes across games, from stage bosses in MegaMan to
Eggman in the 2D Sonic games to Dracula in the Castlevania series.
In all cases, these entities are composed of structured behavioral
elements referencing many structured components and state. We
want a generative space of bosses to encompass the variety of
qualitatively di�erent ways these elements can be combined.

While research has explored generating behavior [4, 7, 29], we
are not aware of existing methods that can generate bosses as com-
plex as Moldorm. To generate bosses, we need a generative method
that both (1) allows a designer to describe a rich but constrained
space of programs representing boss behaviors, and (2) can be
e�ciently sampled.

In this work we contend that a DSL can represent complex boss
behaviors [21] and supports e�ectively de�ning the generative space
of boss behaviors as well. �e properties and restrictions that de�ne
a program being well-formed (e.g., variable references pointing to
in-scope variables, function arguments being of the correct type)
can de�ne desirable properties of boss design. A DSL with variable
references and functions allows for a large possibility space and,
just as importantly, allows a designer to express useful constraints.

For example, when a Moldorm-like boss increases some variable
state a�er being damaged, it must refer to an actual piece of variable
state referencing a number. �e rules of well-typed programs, with
valid variable references and where functions have appropriately
typed arguments, naturally capture these constraints. Furthermore,
we can intentionally choose the types and structure of our language
to support designer constraints; for example, we may not want to
increment (increase) the number representing the boss’s health for
bosses like Moldorm.

In this paper, we show how to express this and other example
constraints with types, where any well-formed program will satisfy
the design constraints. �ese constraints can be combined with
syntactic restrictions (speci�ed through, e.g., grammar production
rules [5]) to de�ne an expressive space of boss designs. In this way,
we frame generating bosses as a problem of program synthesis, or
generating code.

Our primary claim in this paper is that, for the domain of boss
behaviors, standard programming language type theories such as
variable bindings and functions allow us to de�ne an expressive
space with useful constraints. We present a generative system that
combines grammar production rules with restrictions expressed
through the theory of well-formed programs to express desirable
constraints for generating bosses. We demonstrate the system with
implementations of two boss domains—Moldorm and MegaMan—
generating valid bosses in these domains.

We are developing this framework to facilitate authoring in gen-
erative domains. As such, our approach complements generative
methods such as search-based methods or generative grammars.

While we present one implementation for generating well-formed
programs representing bosses, we expect de�ning generative spaces
through designing DSLs to be compatible with other methods. We
substantiate our claim with the following contributions:

• We frame generative tasks as program generation, where
the design of domain-speci�c languages and type systems
de�nes a rich generative space, illustrated through concrete
examples.

• We contend that context-free grammars extended with
type theories are suitably expressive yet restrictive to de-
�ne a generative space while allowing e�cient sampling,
presenting a constructive algorithm to sample programs
in this theory.

• We show a complete example of a generated MegaMan-
like boss from our system, demonstrating the feasibility of
using this method for generation.

Section 2 discusses related work. Section 3 reintroduces our pro-
gramming model for bosses, establishing why a complex represen-
tation is needed. Section 4 gives examples of desirable properties
and constraints that can be speci�ed within the theory of well-
formed programs, and shows that where syntactic constraints do
not su�ce, we can use type constraints to express them. Section 5
describes how we can e�ciently generate well-formed programs
in a constructive way with a generative grammar-based system.
Before concluding, we show in Section 6 a complete example of a
generated boss behavior for a MegaMan-style boss, demonstrating
the feasibility of de�ning a generative space with the DSL.

2 RELATEDWORK
Generative Grammars. A common approach to generating arti-

facts with syntactic constraints among sub-components of the arti-
fact (such as programs) are generative grammars [19], particularly
context-free grammars (CFGs) [2, 16]. Compton et al. Tracery [2]
enables casual creators to easily author bots and other genera-
tive systems, such as natural language and other media. Ryan et
al. Expressionist [15, 16] allows marking grammar elements with
user-provided tags to provide expressiveness in generating nat-
ural language beyond what CFGs provide. Dormans [5] uses a
graph grammar to de�ne the missions and topology of game spaces.
Our system similarly requires graph grammars because the boss
programming model includes �nite-state-machine graphs.

Many of these systems are built on top of context-free grammars,
but these systems o�en support (or require) context-sensitive ex-
tensions to the grammar production rules to support design goals.
In some cases these are speci�c to the design domain (e.g., [16])
and sometimes more general computation. In our application of
DSLs, CFGs are expressive enough to describe the space of syn-
tactically correct programs, but the space of syntactically correct
programs contains an overwhelming number of uselessly invalid
programs that must be avoided. More powerful tools such as at-
tribute grammars [22] are su�cient to express constraints such as
that all variable references are valid and point to in-scope variable
declarations.

Our system uses CFGs to specify a generative space, here for
well-formed programs with variable bindings and a type system.
�is supports a range of generative models and scenarios not easily

Program Synthesis as a Generative Method FDG’17, August 14-17, 2017, Hyannis, MA, USA

captured by prior work, speci�cally, programmatic behaviors such
as boss encounters in games. In principle we can implement a gen-
erator in terms of a generator for a more powerful grammar (e.g.,
a�ribute grammars). Instead, our algorithm extends a CFG genera-
tion algortihm with a domain-speci�c extension to support robust
type system and variable binding. We implement an extension to
CFGs here both for illustrative purposes and to support particular
technical elements for application-speci�c considerations.

Generating Behaviors. Game generation research has also ad-
dressed the problem of representing and generating behavior, though
these systems are typically restricted to narrow design spaces. Cook
et al. [4] use program re�ection to modify game code and test the re-
sulting new code, but only validate games through randomized test-
ing, rather than ensuring semantic validity. Zook and Riedl [29] use
constraint solving to generate game mechanics from a domain. �is
model includes features similar to ours such as variable binding, but
uses ad-hoc constraints. We present a systematic theory that could
be implemented in constraint programming, but also used in other
contexts like generative grammars. Treanor et al. [28] de�ne a wide
range of games using grammar expansion with post-generation
re�nements, using a carefully authored generative grammar to en-
sure valid outputs. Togelius and Schmidhuber [25] and Browne
and Mare [1] both employ search-based generative methods over
a range of game designs, requiring �tness function evaluations to
assess whether valid games are produced. Gellis [7] generates boss
behaviors for a jumping and shooting enemy using search-based
methods. Our work can be seen as a way to augment the bulk of
these existing e�orts to be�er encapsulate designer intuition and
constrain the space of generated artifacts more readily by using
standard type theories.

Game Description Languages. Researchers have developed lan-
guages to facilitate authoring game behaviors for di�erent domains,
such as Façade’s A Behavior Language [11], the Versu storytelling
social model [6], Prom Week’s “social physics” model [12], and
Ceptre’s linear-logic model [10]. Like our DSL these are typically
tailored towards particular game designs, but they are designed for
authoring rather than generating. A broader class of game descrip-
tion languages have been proposed for the purpose of describing
mechanics and analyzing or generating games [1, 9, 13, 17]. �ese
languages aim to model a broad, general class of games, at least for
a particular genre. In contrast, we speci�cally propose that game
languages be tailored to the particular game and generation task to
de�ne a generative space.

Program Synthesis. �e code generation we describe is a form of
program synthesis, the task of discovering an executable program
(in some speci�ed language) that realizes user intent in the form of
some speci�cation [8]. Some applications focus on realizing com-
plete speci�cations, such as super-optimization [18], while other
applications have the challenging problem of an underspeci�cation,
such as programming by example [14]. Our problem is unconven-
tional because it has a much weaker speci�cation: any well-formed
program that �ts within the syntactic constraints provided by the
designer. Where typical synthesis applications rely on search or
constraint solving, our particular speci�cation enables us to use an
e�cient constructive algorithm.

3 A PROGRAMMING MODEL FOR DEFINING
BOSS BEHAVIORS

Programs are a natural speci�cation for agent behavior, particu-
larly relevant for the problem of generating boss behavior. Here we
brie�y describe our programming model for bosses (detailed in pre-
vious work [21]). We generalize theMoldorm example to the domain
of 2D, physics-based boss encounters, typically de�ned through
kinematic physics, collision detection, and �nite-state-machine-
driven behavior. �is domain illustrates how a programming model
with rich constructs such as variables can adequately de�ne its
behavior.

Behaviors are speci�ed by �nite state machines. Finite state
machines are graphs whose nodes are behaviors (e.g., negate this
vector, increment this number, do nothing, track another object
every frame) and whose edges are conditional transitions between
behaviors (e.g., a�er n seconds, when this hurtbox collides with
this hitbox). Behaviors operate on mutable state of the boss or
environment, consisting of primitive types (e.g., numbers used to
track “boss health”) and complex components (e.g., physical objects
to describe player and boss morphology). Some behaviors include
instantaneous updates when they activate (e.g., negating a vector)
while others change state over time while active (e.g., track another
object every frame).

�e programming model for bosses is a programming language
for de�ning both the state and behavior graphs. Figure 2 shows an
example program de�ning the behavior for the Moldorm boss. �e
program has declarations for the state (both primitive types like
numbers and physical objects like Moldorm’s head) and declarations
for behavior graphs describing how the state and behaviors are
related. �ese graphs are part of the syntax; the language includes
both tree-based and graph-based syntactic elements.

Programs in this model are fully evaluated before the game
begins. �e program connects components, state, and behaviors
together. During the update loop, the semantics of these behav-
iors and objects are given by separate implementations of these
behaviors and a physics system. �us, the function call Increment(
speedUp, speed) does not evaluate to immediately increment speed
by speedUp. Instead, it evaluates to a behavior node object, which,
during gameplay, will increment the current value of speed by
speedUp whenever that node of the �nite state machine is active.
Describing a boss can thus be viewed as combining a set of pre-built
components and behaviors with complex connections.

�e programming model provides a type system, with function
calls (used, among other places, when creating the behavior nodes
and edges), variable declarations and references (so behaviors can
reference shared state), and a basic set of types (because there is
a rich variety of possible objects to reference). We support the
theory of subtypes: if type σ is a subtype of type τ , then any value
of type σ is also of type τ . For example, integers and reals are both
subtypes of number. We can use subtypes to express a range of
designer-relevant constraints (see Section 4.2).

�e example above of Moldorm speeding up when damaged uses
each of these features. �e program declares a variable speed of type
number (Figure 2). NodeA references speed in the SetRandomDirection
(speed, head.velocity) function call, which evaluates to a behav-
ior node that will set Moldorm’s head’s velocity to the current value

FDG’17, August 14-17, 2017, Hyannis, MA, USA Eric Butler, Kristin Siu, and Alexander Zook

State Declarations
// Boss
health: down-only-number = 3
speed: number = 20.0
speedup: number = 5.0
travelTime: number = 120
invincibilityTime: number = 180
…
// Global
wallTeam: team
playerTeam: team
bossTeam: team
…

head: physics-object
position: point = (0.0, 0.0)
velocity: direction = (0.0, 1.0)
…

weakPoint: physics-object
…
isHitBox: bool = true
…

ObjectDamaged(
head,
wallTeam)

Delay(travelTime)
ObjectDamaged(weakPoint, playerTeam)

A B C

D E

F

Delay(invincibilityTime)

(Head) Behavior

SetRandomDirection(
speed,
head.velocity)

Negate(head.velocity)Hold()

Hold()Set(ZERO, head.velocity)
Set(FALSE, weakPoint.IsHitBox)

Increment(speedUp, speed)
Set(TRUE, weakPoint.IsHitBox)

Figure 2: Visualization of the program that de�nes the Moldorm boss. �e program uses variable declarations, function calls,
and variable references to describe the complex behavior of the boss. Body behaviors have been omitted for brevity.

of speed. Node F includes a function call to Increment(speedUp,

speed), which evaluates to a behavior node that increments speed.
By framing generation as a programming model we ensure all
generated bosses are well-formed programs, meaning syntactically
correct programs that are well-typed with valid variable references.
�is ensures boss generation only considers behavior combina-
tions that have valid behavior choices, rather than generating these
options and needing to subsequently evaluate their validity.

4 EXPRESSING DESIGN CONSTRAINTS AS
WELL-FORMED PROGRAM CONSTRAINTS

In this section we show how features of and constraints on boss
structure are readily expressed as de�nitions of well-formed pro-
grams. �e constraints we describe are sometimes obvious, but
are di�cult or impossible to specify in less expressive grammars
or unnatural and complex to express in more powerful grammars.
We show how to design a type system to express constraints for
boss generation (e.g., the boss’s weak point should be part of the
boss rather than the player or environment). Our examples use
types in ways not supported by common programming languages,
motivating the development of our system.

Our running example is Moldorm-like bosses that share the fol-
lowing features:

(1) Bosses have a complex morphology, consisting of multiple
shapes that may move independently.

(2) Bosses have weak points, one or more parts of their mor-
phology that can (periodically) be damaged by the player.

(3) Bosses react to damage, escalating their behavior with suc-
cessive hits (e.g., by moving faster).

We discuss how each feature of our programmingmodel can express
constraints relevant to this generative space. �ese constraints take
the form of grammar production rules. In Section 6, we provide
a case study in another domain: generating MegaMan-like bosses.
MegaMan-like bosses have simple morphologies, but more complex
movement and a�ack pa�erns involving running, jumping, and
projectile shooting (creation and movement).

4.1 Expressiveness of Variable References
Variable references provide an expressiveness not a�orded by sim-
pler representations by enabling a generator to refer to previously
generated parts of the program.

4.1.1 Weak Points. Consider de�ning a boss’s weak point, the
physical part of the boss where the player can in�ict damage to the
boss by colliding their weapon. Our model uses the ObjectDamaged

(object,opponent) condition for this, de�ning a transition to take
when a hurtbox belonging to opponent (e.g., the player) collides
with the hitbox speci�ed by object. As we are de�ning a generative
space, we want the weak point to be selected randomly from the
boss’s morphology, which is also generated.

How can we express the choice of a random, generated compo-
nent in a behavior? Context-free grammar rules are not su�cient,
because the set of possible objects relies on the context of what
morphology was generated. Instead, we can express this with vari-
able references (Figure 3). �e key part in the production rule for
our weak point is de�ning the object as a reference (notated as
Alias in the �gure) to an existing declaration. �e typing rules con-
strain this reference to be of type physics-object, so any program

Program Synthesis as a Generative Method FDG’17, August 14-17, 2017, Hyannis, MA, USA

// declaration for the ObjectDamaged function
fun ObjectDamaged :

(p h y s i c s− o b j e c t , team) -> b e h a v i o r− e d g e

// production rule for generating boss morphology
// declares a variable of type physics-object
BossMorphology ->

declare p h y s i c s− o b j e c t = ...

// production rule for generating a weak point
DamageCondition ->

ObjectDamaged(
#Alias#, // reference to a physics-object
player) // hard-coded team

Figure 3: Pseudocode illustration of portions of two of the
grammar production rules involved in de�ning a gener-
ated weak point for a boss. �e boss is constructed from a
set of declared physics objects. Choosing a weak point re-
lies on this context. �e Alias non-terminal describes any
valid variable reference. Because ObjectDamaged only ac-
cepts physics objects, this production rule describes only
aliases to morphology.

generated will reference a valid generated physics-object. �is
allows us to express a generative space where bosses can have an
arbitrarily generated morphology and the weak point may be any
part of that morphology.

4.1.2 Escalation. Consider another case for variable references:
the escalation a�er a boss is damaged. Moldorm’s escalation is
Increment(speedUp,speed), meaning the variable state used when
se�ing Moldorm’s speed is incremented by a �xed value a�er dam-
age. How can we generate state altered by escalation? As with our
weak point example, we can use an Alias non-terminal to automat-
ically select a previously declared numerical variable and increase
it. As numbers may be used in all sorts of contexts (boss size, speed,
a�ack duration, a�ack power, time period between vulnerability),
this expresses a wide variety of potential behavior. We use the same
rule in our MegaMan-like example in Section 6.

4.2 Constraints via Typing
Types provide basic guarantees where, for instance, the arguments
to functions are sensible. We can use a richer structure of types
than is typically used when programming bosses in general purpose
languages to constrain our generative space. For example, a two-
dimensional vector type is a common structure to represent both
physical position and velocity, supporting operations such as vector
addition or negation. However, not all vectors are the same; while
it is sensible to negate a velocity, it is usually not sensible to negate
an object’s position. Instead, we can use subtypes to guarantee such
constraints, de�ning two vector subtypes: a point (e.g., position)
and a direction (e.g., velocity). In our DSL, the Negate function
only accepts a direction, preventing negation of positions. Below
we illustrate the value of subtypes for de�ning weak points and
escalation behavior.

4.2.1 Weak Points, Revisited. �e rules in Figure 3 work when
the only declared physical objects are for the boss. But what about
the case where we also declare the environment and the player? In
this case the weak point could appear on the player.1 �e declared
type of ObjectDamaged ensures that only a physics-object will ap-
pear as its �rst argument. We can use typing to create a constraint
to prevent player or environment objects from being referenced by
ObjectDamaged.

We create an appropriate constraint by introducing a new type
boss-object as a subtype of physics-object (meaning all boss-
objects are physics-objects, as in Figure 4). We modify the decla-
ration of boss morphology, annotating the component objects to
be of type boss-object. We then modify the production rule for
the weak point, annotating that it speci�cally references a boss-
object. �is prevents the player or environment objects (both of
type physics-object but not boss-object) from being used.

type b o s s− o b j e c t is-subtype-of p h y s i c s− o b j e c t

// specifically annotate as boss-object type
BossMorphology ->

declare b o s s− o b j e c t = ...

// constrain reference to be boss-object type
DamageCondition ->

ObjectDamaged(
#Alias: b o s s− o b j e c t #,
player)

Figure 4: Variant of rules in Figure 3 that use subtypes to fur-
ther constrain the weak point to necessarily be part of the
boss’smorphology. �is is necessary if the program includes
declarations for other physics objects, such as the player or
the environment.

4.2.2 Escalation, Revisited. Our escalation generation expresses
a wide range of potential behavior, including many valid, but unde-
sirable cases. A common numeric variable for bosses is the boss’s
“health.” When health reaches zero, the �ght ends. Escalation, as
currently speci�ed, allows us to generate a boss where the health is
incremented by the escalation each time the boss is damaged. We
can prevent this undesired boss behavior by constraining health to
only decrease via subtypes.

We create two subtypes of number: numbers that may only
be decremented (down-only-number) and numbers without this
restriction (unrestricted-number). We then adjust our produc-
tion rules: �rst, we annotate nearly every numeric literal (except
health) with unrestricted-number. We then change the type
declaration for Increment so that it only accepts values of type
unrestricted-number. Finally, we annotate the declaration of the
variable representing health to be of type down-only-number.
Now, our production rule for randomly incrementing a number is
constrained to avoid health. �e corresponding Decrement function,
on the other hand, can accept any number.
1Undesirable in this case, though it is an aesthetically fascinating design for a boss
encounter.

FDG’17, August 14-17, 2017, Hyannis, MA, USA Eric Butler, Kristin Siu, and Alexander Zook

�ese types are of limited use in general programming, but of
great value for specifying this particular constraint for boss behav-
iors. �e power of using a DSL is that designers can control the
type system, introducing domain-speci�c types to enforce domain-
speci�c design considerations.

4.3 Boss Behavior Generative Space Design is
Programming Language Design

�e examples shown in this section express design properties and
constraints for boss encounters in terms of well-formed programs.
�at is, we have de�ned our generative space for bosses to be the
space of all valid programs in our DSL. We do this by choosing
the constructs, types, features, and grammar of our DSL to capture
our domain-speci�c design goals. �e process of designing the
generative space is one of designing the domain-speci�c language.

5 GENERATINGWELL-FORMED PROGRAMS
Our primary claim is that the semantics of well-formed programs
are an e�ective tool to describe generative spaces for boss designs.
�is is only useful if we can e�ciently generate well-formed pro-
grams, so we describe one method for generating programs here.
We generate boss behaviors constructively to enable e�cient sam-
pling of variable output. Generative grammars, particularly ex-
pressive ones such as a�ribute grammars [22], are capable of de-
scribing well-formed programs. We instead extend context-free
grammars to express well-formed programs directly. We do this
both for illustrative purposes as well as to support extensions for
application-speci�c design considerations (Section 6.2). We used
this method to generate the example in Section 6.

In a context-free grammar, a context-free production rule is de-
�ned by a non-terminal symbol to be expanded and a tree (or graph
for graph grammars) of non-terminals and terminals to replace it
with. Generating a program for a given set of production rules
starts with a single non-terminal representing the entire program.
Each step recursively applies rules until only terminals remain. In a
context-free se�ing, a rule may be applied to any non-terminal that
matches the non-terminal of the rule. However, the rules we use to
generate well-formed programs must be more restrictive, ensuring,
for example, variable references must be valid. Below we describe
these extra conditions under which it is safe to apply a production
rule to a given non-terminal in a partially expanded program. We
focus on the tree grammar; the extensions to a graph grammar are
straightforward.

5.1 Type-Aware Grammar Expansion
In the tree grammar for programs, non-terminals represent program
expressions. Note that we are not generating function de�nitions;
these are supplied alongwith the production rules. A given concrete
expression has some determinable type τ that is one of:

(1) A literal of type τ .
(2) A function call or other compound construct (with zero or

more sub-expressions for arguments) that returns τ .
(3) A variable declaration of type τ (with a sub-expression of

type τ describing the value)
(4) A reference to an existing variable of type τ .

We can e�ciently determine the type of any concrete expression,
with only limited context of the rest of the program.

For generation we can reverse this process. Given a desired type
for an expression we are generating, for each possible generated
outcome we know:

(1) Which literals can be of that type.
(2) Which function calls may be of that type, and what types

their arguments must have to be that type.
(3) Which type the value sub-expression of a variable declara-

tion must be.
(4) Which in-scope variables have that type.

If we know which type an expression is supposed to be, we can
�lter productions to those with valid types. Determining which
literals and functions can be of appropriate type is straightforward;
we treat variable bindings in more detail in Section 5.3.

5.2 Determining the Required Type of
Non-Terminals

Our algorithm must determine the allowable type of each non-
terminal to �lter possible productions to only those of suitable type.
We can get the required type from context. Top-level expressions
have known required types based on the language structure. For
example, expressions for nodes of the behavior graphs must be
of type behavior-node. All sub-expressions can only appear as
function arguments. Given the required type of the parent function
call (which we know), we can determine the required type of each of
the parameters, and thus the required type of the current expression.

Our implementation also supports annotating production rules
with more restrictive types, as in Figure 4. If such an annotation ex-
ists, the intersection of the annotated type and the context-derived
type is used.

5.3 Generating Variable References
Variable declarations and references require special care during
code generation as well-formed variable references require global
context of the program. To generate well-formed variable refer-
ences, the algorithm must track all valid variables at each point in
the program.

To support grammar expansion that produces well formed vari-
able bindings, we make the two assumptions about the program-
ming model and the grammar production rules. First, the algorithm
must know the scoping rules for the DSL. Our DSL for bosses
uses lexical scoping rules typical of what one would �nd in general
purpose languages. Second, the algorithm must know which con-
structs in the DSL are declarations or references. Declarations are
described by a given identi�er and a given type for the variable be-
ing declared. References are described by a given identi�er, which,
in well-formed programs, should match the name of a previous,
in-scope declaration whose type is a subtype of the required type
of the reference expression.

Our algorithm tracks the current variable context for each point
in the program. Whenever a generated terminal is a declaration,
its variable is added to the appropriate contexts. When expanding
a non-terminal (with required type τ) whose productions include
terminals that are references, the possible productions are limited
to those referencing in-scope variables of a subtype of τ .

Program Synthesis as a Generative Method FDG’17, August 14-17, 2017, Hyannis, MA, USA

Our system fully expands earlier points in the program before
later points (an in-order tree traversal) to have the most complete
knowledge about which variables are in scope. �is is not necessary
for soundness; the algorithm can always ignore any potential pro-
duction and still guarantee a well-formed program. But expanding
in a di�erent ordering can lead to a situation where no references
are available (though they would be in a di�erent order), leading to
failure.

6 A COMPLETE EXAMPLE OF A GENERATED
BOSS

To demonstrate the feasibility of de�ning a generative space for
bosses with a programming model, we applied the algorithm de-
scribed in the previous section to generating MegaMan-like boss
encounters, in which an enemymoves, jumps, and shoots in a series
of a�ack pa�erns in a side-scrolling 2D room. In this section, we
walk through a complete example of a generated artifact from this
space, shown in Figure 5. We explain in detail various parts of the
rules used to generate the artifact and how the generative space
used in this example relied on the theories of well-formed programs
to be expressed.

6.1 Walking through the Example
We de�ne the type of boss we generate here with several properties
(contrasted to our previous Moldorm-like example):

(1) Simple morphologies, where bosses are a single box.
(2) Complex movement pa�erns and behavior, with running

and jumping around a side-view 2D room.
(3) Projectile shooting, where both the shooting behavior and

the properties of the projectiles themselves can be varied
and complex.

(4) Escalation, similarly to Moldorm. As the boss is damaged
by the player, properties of the a�ack pa�erns (e.g., speed,
damage, frequency of shots) increase.

�is example combines the features discussed in Section 4 to
describe its generative space.

6.1.1 Defining Movement and A�acks. Movement and a�ack
behaviors are described using grammar rules. MegaMan bosses
may also damage the player during movement, so we refer to both
pa�erns of behavior as a�ack pa�erns. Since these behaviors are
graphs, we use graph grammars, which have been applied, for
example, to generating missions for Zelda dungeons [5].

�ere are three possible productions for an a�ack pa�ern: (1)mov-
ing for some duration, (2) jumping, and (3) shooting a projectile.
Examples in our artifact are nodes 1G, 1C, and 1B, respectively. �e
production rules for moving/jumping also allow shooting inside of
them. �e overall structure of any a�ack behavior graph is that the
boss randomly selects a pa�ern (node 1A), executes it fully, then
returns to node 1A to select another). �e use of grammar rules
for a�ack pa�erns allows for a rich structure of distinguishable
behavior. �e generative space includes a variety of structurally
varied combinations of these basic elements.

6.1.2 Parameterizing A�ack Pa�erns. Each part (i.e., node) of
an a�ack pa�ern is parameterized. Some parameters are numbers,
such as the duration between actions, the movement speed, the

initial jumping speed, or projectile speeds. Other parameters in-
clude the orientation of a projectile shot (e.g., le� or right) or the
projectiles themselves. All parameters are generated as arbitrary
expressions, either as variable references (such as speed1 in 1C) or
function calls (such as RandOrientation in the same node).

Consequently, the parameters occasionally reference each other.
For example, the move speed used in node 1G shares a reference
with the speed of projectile p3. Our algorithm ensures all generated
artifacts are well-formed, so all of these variable references will also
point to valid declarations. �e expressiveness of our representation
allows for generative behavior like the sharing of references.

Moreover we take advantage of subtypes (like the examples in
Section 4.2) to restrict this variable sharing to sensible values. Some
numerical parameters represent a speed (e.g., projectile speed),
while others represent a duration (e.g., the delay between nodes
1H and 1I). �is is a bene�cial constraint because the reasonable
range of values for durations (in seconds) is very unlikely to be
similar to the reasonable range for speed (in game units per second).

�e bosses in this space can �re a variety of projectiles in ways
that can be based on state. For example, the pa�ern in 1B randomly
chooses between any of the 3 projectiles while 1H always �res
the second projectile. As with numerical references, our algorithm
guarantees these projectile references are sensibly connected.

6.1.3 Escalation. As with Moldorm, the bosses we generate here
escalate their behavior when damaged. Mechanically, these bosses
di�er from Moldorm in that they do not modally react to damage,
and damage does not interrupt movement or a�acks. �is is ex-
pressed with a parallel escalation graph rather than being integrated
in a single graph as Moldorm is.

As in Section 4.1, our production rules for this example force
an Alias for the argument to Increment, which expressed any valid
variable reference to a previously declared number. Any of the
numerical values used in the a�ack pa�erns can be referenced. For
example, as can be seen in Figure 5, the nodes 2B, 2C, and 2D
increment parameters including the speed of projectiles, jumping
speed, and the delay a�er shooting. In this particular case, speed3
is both incremented and used as the value to increment speed1,
meaning speed1 increases superlinearly. Finally, we use the strategy
of having a down-only-number type (explained in Section 4.2.2)
to prevent the health value from being incremented.

Di�erent artifacts will escalate di�erent aspects of the boss’s pa-
rameters. �ese are qualitatively di�erent experiences: one where
the enemy speeds up, one where the enemy does more damage,
one where the enemy’s projectiles get faster. �is complexity is
enabled through our DSL representation.

6.2 Extensions to the Method
Lastly, we discuss a few extensions to the basic algorithm discussed
in Section 5 that we found particularly helpful in de�ning the
generative space for this example.

6.2.1 Promoting variable reuse with automatic declarations. As
our examples illustrate, these bosses draw their complex behaviors
by havingmultiple parts of their programs reference shared variable
state. Assuming a declaration was generated, we can encourage
reuse of it with production rules that force the use of references,

FDG’17, August 14-17, 2017, Hyannis, MA, USA Eric Butler, Kristin Siu, and Alexander Zook

State Declarations
// Boss
health: down-only-number = 10
speed1: speed = …
p1: projectile = DefineProjectile(speed1, …)
speed2: speed = …
p2: projectile = DefineProjectile(speed2, …)
speed3: speed = …
p3: projectile = DefineProjectile(speed3, …)
dur1: duration = …
dur2: duration = …
speed4: speed = …
dur3: duration = …
orient1: orientation = left
dur4: duration = …
dur5: speed = …
…
// Global
envTeam: team // environment team
playerTeam: team
…

boss: physics-object
position: point = (0.0, 0.0)
velocity: direction = (0.0, 0.0)
…
isHitBox: bool = true
isHurtBox: bool = true
…

RandTransition()

Jump(
RandOrientation(),
speed1)

Hold()

1A

1B

1C 1D 1E

StartMove(orient1, speed3)

Attack Behavior

Hold()
Increment(
speed3,
speed1)

Increment(
dur2,
dur1)

Increment(
speed4,
speed3)

Escalation Behavior

1G

Delay(dur1)
To
1A

Landed(
boss,
envTeam)

Delay(dur3) To 1A

ObjectDamaged(
boss,
playerTeam)

Delay(dur2)

Delay(dur4)

To 1A

Hold()

Landed(
boss,
envTeam)

Delay(dur2)

CreateProjectile(
RandChoice3(p1, p2, p3)
boss.position
RandOrientation())

Hold()

Jump(
RandOrientation(),
2 * speed4)

Hold()

Hold()

1F

CreateProjectile(
p2,
boss.position
RandomOrientation())

Hold()

1H

StopMove()

Hold()

1I

2A 2B 2C 2D

Note: The choice of MegaMan’s Cut
Man sprite is arbitrary and has no
semantic significance.

Decrement(1, health)

2E

Figure 5: Visualization of a literal description of a example generated program for a MegaMan-like boss. �e �rst graph
de�nes attack patterns; the boss randomly selects one of 3 patterns involving combinations of running, jumping, and/or
shooting. �e second graph escalates the encounter when the boss is damaged by incrementing variables referenced by
the attack patterns. �is complex behavior is expressible because of variable references, and type constraints are used to
constrain which ones may be incremented.

Program Synthesis as a Generative Method FDG’17, August 14-17, 2017, Hyannis, MA, USA

as in our example of escalation in Figure 5. But the state being
referenced must be referenced twice to be shared.

�is presents a small challenge: we generate the program in-
order, so, to use variable state, the generator must fortuitously
declare a variable of appropriate type before any of the behaviors
that might want use this variable are generated. In a sense, the
generator is making the decision backwards: a designer might
typically choose the behavior �rst, then the variable state necessary
to implement it, not a set of behaviors that happen to be compatible
with arbitrarily chosen state.

To more easily support variable re-use, our generator automat-
ically promotes literals to declarations. �at is, any time it is ex-
panding an expression and selects a production of a literal value, it
automatically converts this to a variable declaration in the current
scope and creates a reference to that variable. In this way, any
literal in the system has the potential to be referenced by other
code. A designer can encourage this with production rules that
force variable references as we do with escalation (Section 4.1.2).

6.2.2 Generating Literals A�er Generating Structure. �ere are
many literal parameter values to choose when generating a boss
behavior. With the example in Figure 5, literals control the projectile
shapes and speeds, the boss size, their movement speed, jumping
speed, timings, and many other values. While these literals are
of course irrelevant from the perspective of ensuring well-formed
programs, they are critical for boss design.

�ere are many useful design constraints we might wish to im-
pose on these literals. One example is to restrict the overall duration
of a single a�ack pa�ern to be within some designer-speci�ed prob-
ability distribution, de�ned by the sums of all of the Delay nodes
in a subgraph for the a�ack pa�ern. While generative grammars
are useful for constraining program structure, it is challenging to
enforce this constraint during program generation with production
rules because we do not know how many nodes will be gener-
ated, especially if we want to control the distribution. But, if we
have a �xed program structure, it is straightforward to analyze the
structure and enforce such constraints on the literal values.

One option for generating literals is, rather than doing so during
program generation, to leave holes in the program for the literal
values. A�er the structure is �xed, we can extract the set of holes
and use a di�erent generative method to choose the particular val-
ues, while being able to use the program structure as information
to help guide and constrain the generation. �e resulting �at pa-
rameter space is amenable to a wide variety of methods, such as
search-based methods that optimize �tness functions [26, 27].

7 CONCLUSIONS
In this paper we advance the thesis that programming languages
are a useful and powerful model for expressing generative spaces,
speci�cally for domains characterized by complex state and behav-
iors like boss encounters. We demonstrated how the constraints
of well-formed programs can a�ord suitable authorial control over
generative spaces. Moreover, we presented an algorithm that ex-
tends context-free grammar generation to generate well-formed
programs in a constructive way. To illustrate this approach we used
a previously developed programming model for 2D boss behav-
iors [21] to examine several examples of design-relevant properties

and constraints that could be expressed in the constraints of vari-
ables and types. We presented another example of a generated
MegaMan-like boss to illustrate the feasibility of using this process.

�e key idea for generating bosses is to make the space of well-
formed, valid programs synonymous with the desired generative
space of bosses. De�ning this program space is de�ning the gener-
ative space. By choosing grammar, types, and language constructs
to capture domain-speci�c design concerns, we modeled proper-
ties such as generated boss weak points and a�ack pa�erns while
ensuring the resulting behaviors were runnable and sensible.

Our use of programming languages as a representation for gen-
eration is not limited to 2D boss behavior, and instead encompasses
a broader class of generative methods with wider applications. In
the future we foresee similar models being e�ective to generate
game combat systems, overworlds with complex topology (e.g., in
Metroidvania games), and other game systems that demand care-
ful relationships between the semantics of their parts. We also
believe there is room for improvement by developing and integrat-
ing heuristics to guide generation toward higher quality artifacts
within the valid design space. We presented two separate ideas: one
of synthesizing programs using grammars and one of representing
a design space as a space of programs. We expect the la�er to be
usable in other generative methods and se�ings, expanding the
range of what designers can create.

REFERENCES
[1] Cameron Browne and Frederic Maire. 2010. Evolutionary Game Design. IEEE

Transactions on Computational Intelligence and AI in Games 2 (2010), 1–16.
[2] Kate Compton, Ben Kybartas, and Michael Mateas. 2015. Tracery: An Author-

Focused Generative Text Tool. Interactive Storytelling 9445 (2015).
[3] Kate Compton, Joseph C Osborn, and Michael Mateas. 2013. Generative Methods.

In 4th Workshop on Procedural Content Generation in Games.
[4] Michael Cook, Simon Colton, Azalea Raad, and Jeremy Gow. 2013. Mechanic

Miner: Re�ection-Driven Game Mechanic Discovery and Level Design. In
EvoGAMES.

[5] Joris Dormans. 2010. Adventures in level design: Generating missions and spaces
for action adventure games. In 1st Workshop on Procedural Content Generation in
Games.

[6] Richard Evans and Emily Short. 2014. Versu �� A Simulationist Storytelling
System. IEEE Trans. Computational Intelligence and AI in Games 6, 2 (2014),
113–130.

[7] Abraham Gellis. 2015. Procedurally Generated Entity Behaviors for Game Content.
Master’s thesis. New York University.

[8] Sumit Gulwani. 2010. Dimensions in Program Synthesis. In Proceedings of the 12th
International ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming (PPDP ’10). ACM, New York, NY, USA, 13–24. DOI:h�p://dx.doi.
org/10.1145/1836089.1836091

[9] Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and Michael
Genesereth. 2008. General game playing: Game description language speci�cation.
Technical Report. Stanford University.

[10] Chris Martens. 2015. Ceptre: A Language for Modeling Generative Interactive
Systems. In 11th AAAI Conference on Arti�cial Intelligence and Interactive Digital
Entertainment.

[11] Michael Mateas and Andrew Stern. 2002. Architecture, authorial idioms and early
observations of the interactive drama Façade. Technical Report. Carnegie Mellon
University.

[12] Joshua McCoy, Mike Treanor, Ben Samuel, A Reed, Michael Mateas, and Noah
Wardrip-Fruin. 2014. Social Story Worlds With Comme il Faut. IEEE Trans.
Computational Intelligence and AI in Games 6, 2 (2014), 97–112.

[13] John Orwant. 2000. EGGG: Automated programming for game generation. IBM
Systems Journal 39, 3.4 (2000), 782–794.

[14] Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A framework for
inductive program synthesis. In Proceedings of the 2015 ACM SIGPLAN Inter. Conf.
on Object-Oriented Programming, Systems, Languages, and Applications. ACM.

[15] James Ryan, Michael Mateas, and Noah Wardrip-Fruin. 2016. Characters Who
Speak �eir Minds: Dialogue Generation in Talk of the Town. In 12th AAAI
Conference on Arti�cial Intelligence and Interactive Digital Entertainment.

http://dx.doi.org/10.1145/1836089.1836091
http://dx.doi.org/10.1145/1836089.1836091

FDG’17, August 14-17, 2017, Hyannis, MA, USA Eric Butler, Kristin Siu, and Alexander Zook

[16] James Ryan, Ethan Seither, Michael Mateas, and Noah Wardrip-Fruin. 2016.
Expressionist: An authoring tool for in-game text generation. In Interactive
Storytelling: 9th International Conference on Interactive Digital Storytelling, ICIDS
2016, Los Angeles, CA, USA, November 15–18, 2016, Proceedings 9. Springer, 221–
233.

[17] Tom Schaul. 2013. A Video Game Description Language for Model-based or
Interactive Learning. In IEEE Conference on Computational Intelligence in Games.

[18] Eric Schkufza, Rahul Sharma, andAlexAiken. 2013. Stochastic Superoptimization.
In Proceedings of the Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’13). ACM, New
York, NY, USA, 305–316. DOI:h�p://dx.doi.org/10.1145/2451116.2451150

[19] Noor Shaker, Antonios Liapis, Julian Togelius, Ricardo Lopes, and Rafael Bidarra.
2015. Constructive generation methods for dungeons and levels. In Procedural
Content Generation in Games: A Textbook and an Overview of Current Research.
Springer.

[20] Noor Shaker, Julian Togelius, and Mark J. Nelson. 2015. Procedural Content
Generation in Games: A Textbook and an Overview of Current Research. Springer.

[21] Kristin Siu, Eric Butler, and Alexander Zook. 2016. A programming model for
boss encounters in 2d action games. In Experimental AI in Games Workshop,
Vol. 3.

[22] Kenneth Slonneger and Barry L Kurtz. 1995. Formal syntax and semantics of
programming languages. Vol. 340. Addison-Wesley Reading.

[23] A.M. Smith andM.Mateas. 2011. Answer set programming for procedural content
generation: A design space approach. IEEE Transactions on Computational
Intelligence and AI in Games 3, 3 (2011), 187–200.

[24] Gillian Smith and JimWhitehead. 2010. Analyzing the expressive range of a level
generator. In 1st Workshop on Procedural Content Generation in Games. ACM, 4.

[25] Julian Togelius and Jürgen Schmidhuber. 2008. An experiment in automatic
game design. In IEEE Symposium on Computational Intelligence and Games.

[26] Julian Togelius and Noor Shaker. 2015. �e search-based approach. In Procedural
Content Generation in Games: A Textbook and an Overview of Current Research.
Springer.

[27] Julian Togelius, G. Yannakakis, K. Stanley, and Cameron Browne. 2011. Search-
based Procedural Content Generation: A Taxonomy and Survey. IEEE Transac-
tions on Computational Intelligence and AI in Games 3, 3 (2011), 172–186. DOI:
h�p://dx.doi.org/10.1109/TCIAIG.2011.2148116

[28] Mike Treanor, Bobby Schweizer, Ian Bogost, andMichaelMateas. 2012. �emicro-
rhetorics of Game-O-Matic. In 7th International Conference on the Foundations of
Digital Games.

[29] Alexander Zook and Mark O. Riedl. 2014. Automatic Game Design via Mechanic
Generation. In Proceedings of the 28th AAAI Conference on Arti�cial Intelligence.

http://dx.doi.org/10.1145/2451116.2451150
http://dx.doi.org/10.1109/TCIAIG.2011.2148116

	Abstract
	1 Introduction
	2 Related Work
	3 A Programming Model for Defining Boss Behaviors
	4 Expressing Design Constraints As Well-Formed Program Constraints
	4.1 Expressiveness of Variable References
	4.2 Constraints via Typing
	4.3 Boss Behavior Generative Space Design is Programming Language Design

	5 Generating Well-Formed Programs
	5.1 Type-Aware Grammar Expansion
	5.2 Determining the Required Type of Non-Terminals
	5.3 Generating Variable References

	6 A Complete Example of a Generated Boss
	6.1 Walking through the Example
	6.2 Extensions to the Method

	7 Conclusions
	References

